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Abstract

Universidad de Sevilla
Department of Aerospace Engineering and Fluid Mechanics.

Model Predictive Control Applications to Spacecraft Rendezvous
and Small Bodies Exploration
by Julio César Sánchez Merino

The overarching goal of this thesis is the design of model predictive control
algorithms for spacecraft proximity operations. These include, but it is not
limited to, spacecraft rendezvous, hovering phases or orbiting in the vicinity of
small bodies. The main motivation behind this research is the increasing de-
mand of autonomy, understood as the spacecraft capability to compute its own
control plan, in current and future space operations. This push for autonomy
is fostered by the recent introduction of disruptive technologies changing the
traditional concept of space exploration and exploitation. The development of
miniaturized satellite platforms and the drastic cost reduction in orbital access
have boosted space activity to record levels. In the near future, it is envisioned
that numerous artificial objects will simultaneously operate across the Solar
System. In that context, human operators will be overwhelmed in the task
of tracking and commanding each spacecraft in real time. As a consequence,
developing intelligent and robust autonomous systems has been identified by
several space agencies as a cornerstone technology.

Inspired by the previous facts, this work presents novel controllers to tackle
several scenarios related to spacecraft proximity operations. Mastering prox-
imity operations enables a wide variety of space missions such as active debris
removal, astronauts transportation, flight-formation applications, space sta-
tions resupply and the in-situ exploration of small bodies. Future applications
may also include satellite inspection and servicing. This thesis has focused on
four scenarios: six-degrees of freedom spacecraft rendezvous; near-rectilinear
halo orbits rendezvous; the hovering phase; orbit-attitude station-keeping in
the vicinity of a small body. The first problem aims to demonstrate rendezvous
capabilities for a lightweight satellite with few thrusters and a reaction wheels
array. For near-rectilinear halo orbits rendezvous, the goal is to achieve higher
levels of constraints satisfaction than with a state-of-the-art predictive con-
troller. In the hovering phase, the objective is to augment the control accuracy
and computational efficiency of a recent global stable controller. The small
body exploration aims to demonstrate the positive impact of model-learning
in the control accuracy.

Although based on model predictive control, the specific approach for each
scenario differs. In six-degrees of freedom rendezvous, the attitude flatness
property and the transition matrix for Keplerian-based relative are used to
obtain a non-linear program. Then, the control loop is closed by linearizing
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the system around the previous solution. For near-rectilinear halo orbits ren-
dezvous, the constraints are assured to be satisfied in the probabilistic sense
by a chance-constrained approach. The disturbances statistical properties are
estimated on-line. For the hovering phase problem, an aperiodic event-based
predictive controller is designed. It uses a set of trigger rules, defined using
reachability concepts, deciding when to execute a single-impulse control. In
the small body exploration scenario, a novel learning-based model predictive
controller is developed. This works by integrating unscented Kalman filtering
and model predictive control. By doing so, the initially unknown small body
inhomogeneous gravity field is estimated over time which augments the model
predictive control accuracy.
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Resumen

Universidad de Sevilla
Departmento de Ingenieŕıa Aeroespacial y Mecánica de Fluidos.

Aplicaciones del Control Predictivo Basado en Modelo al
Rendezvous de Veh́ıculos Espaciales y la Exploración de Cuerpos

Menores
por Julio César Sánchez Merino

El objeto de esta tesis es el diseño de algoritmos de control predictivo basado
en modelo para operaciones de veh́ıculos espaciales en proximidad. Esto in-
cluye, pero no se limita, a la maniobra de rendezvous, las fases de hovering u
orbitar alrededor de cuerpos menores. Esta tesis está motivada por la creciente
demanda en la autonomı́a, entendida como la capacidad de un veh́ıculo para
calcular su propio plan de control, de las actuales y futuras misiones espa-
ciales. Este interés en aumentar la autonomı́a está motivado por el cambio del
concepto tradicional de exploración y explotación espacial debido al desarrollo
de nuevas tecnoloǵıas disruptivas. Estas son las plataformas satelitales minia-
turizadas y la drástica reducción de los costes de puesta en órbita. Dichas
tecnoloǵıas han impulsado la actividad espacial a niveles de record. En un
futuro próximo, se prevé que un gran número de objetos artificiales operen de
manera simultánea a lo largo del Sistema Solar. En tal caso, el control ter-
restre quedará desbordado en la tarea de monitorizar y controlar cada satélite
en tiempo real. Es por ello que el desarrollo de sistemas autónomos inteligentes
y robustos es considerado una tecnoloǵıa fundamental por diversas agencias es-
paciales.

Debido a lo anterior, este trabajo presenta nuevos resultados en el con-
trol de operaciones de veh́ıculos espaciales en proximidad. Dominar dichas
operaciones permite llevar a cabo una gran variedad de misiones espaciales
como la retirada de basura espacial, transferir astronautas, aplicaciones de
vuelo en formación, reabastecer estaciones espaciales y la exploración de cuer-
pos menores. Futuras aplicaciones podŕıan incluir operaciones de inspección
y mantenimiento de satélites. Esta tesis se centra en cuatro escenarios: ren-
dezvous de satélites con seis grados de libertad; rendezvous en órbitas halo
cuasi-rectiĺıneas; la fase de hovering ; el mantenimiento de órbita y actitud en
las inmediaciones de un cuerpo menor. El primer caso trata de proveer capaci-
dades de rendezvous para un satélite ligero con pocos propulsores y un conjunto
de ruedas de reacción. Para el rendezvous en órbitas halo cuasi-rectiĺıneas, se
intenta aumentar el grado de cumplimiento de restricciones con respecto a un
controlador predictivo actual. Para la fase de hovering, se mejora la precisión
y eficiencia computacional de un controlador globalmente estable. En la explo-
ración de un cuerpo menor, se pretende demostrar el mayor grado de precisión
en el control que se obtiene con el aprendizaje del modelo.
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Siendo la base el control predictivo basado en modelo, el enfoque espećıfico
difiere en cada escenario. En el rendezvous con seis grados de libertad, se ob-
tiene un programa no-lineal con el uso de la propiedad flatness de la actitud
y la matriz de transición del movimiento relativo Kepleriano. El bucle de con-
trol se cierra linealizando en torno a la solución anterior. Para el rendezvous
en órbitas halo cuasi-rectiĺıneas, el cumplimiento de restricciones se garantiza
probabiĺısticamente mediante la técnica chance-constrained. Las propiedades
estad́ısticas de las perturbaciones son estimadas on-line. En la fase de hover-
ing, se usa el control predictivo basado en eventos. Ello consiste en unas reglas
de activación, definidas con conceptos de alcanzabilidad, que deciden la eje-
cución de un incremento de velocidad. En la exploración de cuerpos menores,
se desarrolla un controlador predictivo basado en el aprendizaje del modelo.
Funciona integrando un filtro de Kalman con control predictivo basado en mod-
elo. Con ello, se consigue estimar las inomogeneidades del campo gravitario, lo
que repercute en un aumento de la precisión del controlador predictivo basado
en modelo.
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Chapter 1

Introduction

Hemos descubierto e redondeado
toda la redondeza del mundo,
yendo por el occidente e veniendo
por el oriente.

Juan Sebastián Elcano

The Earth is the cradle for
humanity but one can not stay in
the cradle forever.

Konstantin Tsiolkovskii

I would like to die on Mars. Just
not on impact.

Elon Musk
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2 1.1 Motivation and challenges

1.1 Motivation and challenges

Space exploration and exploitation plays a key role in advancing mankind’s
knowledge and technological capabilities in several disciplines. Space appli-
cations range from Earth observation, human presence in space, planetary
defence, satellite based navigation, scientific discoveries and telecommunica-
tions amongst others. In the past, space operations have been solely carried
out by a few public organizations (e.g. NASA, ESA, Roscosmos) which were
the only ones possessing the capability to access space. Nonetheless, a signifi-
cant number of private initiatives, with the aim of reducing costs and finding
unexplored economic revenues, have arisen over the past decade [Genta14].
These new actors have consolidated their presence in the space sector under
two fundamental pillars. Firstly, they have allowed a more universal access to
space, low-Earth orbit in particular, by drastically lowering launch costs. This
low-cost orbit insertion has been achieved by SpaceX through the use of scal-
able and reusable launchers [Reddy18]. Secondly, satellite architectures have
evolved towards lightweight miniaturized platforms [Shkolnik18]. This mini-
malist concept allows mass production (suitable for megaconstellations) and
turnkey solutions for non-expert space businesses. Consequently, the space
ecosystem is evolving more rapidly than ever as private companies are also
looking forward to expand their activity to extra-terrestrial destinations such
as the Moon and Mars [Musk17].

Space agencies have also set their own plans for the 2020 decade. These
include a permanent sustainable human presence on the Moon (Artemis pro-
gram) [v.Ehrenfried20], asteroid deflection [Cheng18], novel space telescopes
[Sabelhaus07], rotorcraft-based extraterrestrial exploration [Lorenz18] and the
first active space debris removal [Forshaw20]. Specifically, Artemis is an ambi-
tious crewed lunar exploration program relying on international cooperation.
As such, International Space Station partners will build, assembly and operate
a space station in cislunar space, namely the Lunar Orbital Platform-Gateway
(LOP-G) [Merri18]. To this end, NASA is finishing its new super-heavy lift ve-
hicle, the Space Launch System, capable of sending between 26 to 45 tonnes on
a trans-lunar injection. These plans are deemed critical in expanding human
presence to the Moon, Mars and deeper in the Solar System.

Under the previous scenario, it is evident that reducing costs and resources
allocation, without a loss of safety, is desirable to both maximize the taxpayers
investments return and augment commercial applications competitiveness. In
that sense, several disciplines such as autonomous systems, electric propulsion,
materials science, observation devices and space farming, amongst others, are
expected to provide breakthroughs, thus enabling novel mission concepts. In
particular, this dissertation concerns autonomous systems for proximity oper-
ations. This topic is of special relevance to space exploration and exploitation
needs as close distance operations enable a considerable number of the afore-
mentioned missions (e.g. space station supplying, on-orbit assembly, small
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bodies exploration, etc.).

1.1.1 The push for autonomy

In the context of space operations, autonomy refers to the spacecraft capa-
bility to compute its own control sequence. The dawn of space exploration
in 1950s-1960s focused on sending humans to Earth orbit and the Moon as a
consequence of the space race between the Soviet Union and United States. At
the same time, the use of cheaper and less risky robotic missions was necessary
to understand the environment that manned missions will be facing as well as
reaching further celestial bodies .

After completion of the Apollo program in the 1970s and the Soviet Union
collapse in 1991, public interest and international competition in manned space
exploration diminished over time. Nonetheless, human presence in space was
maintained by building and operating low-Earth orbit space stations. In par-
allel, robotic missions achieved numerous successes with flybys to all Solar
System planets, in-situ exploration of Mars and space station resupplying.

The cancellation of the Space Shuttle program in early 2010s left the United
States superpower without the capability of putting astronauts into orbit from
its own soil. However, this fact boosted private companies to search for new
ways of reducing the cost of orbit insertion. In particular, SpaceX achieved
a significant breakthrough by demonstrating the autonomous recovery of its
launchers first stages. This technology achievement, in terms of autonomy,
has allowed reusable launchers providers to dominate the commercial launch
market from the past three years (a 57% of launches in 2020) as it can be seen
in Fig. 1.1.

Figure 1.1: Commercial launch market share from 2015 to 2020.
Reusable launchers are sliced.

In spite of an historical record with significant successes (e.g. Apollo guid-
ance autopilot), autonomous space operations have also suffered several re-
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cent anomalies with a dramatic spacecraft loss in some cases. In 2005, the
autonomous proximity operations demonstrator DART ran out of fuel and
collided with its target telecommunications satellite [NASA07]. In 2009, the
active satellite Iridium 33 and the defunct one Kosmos-2251 collided creating a
huge cloud of debris. The automated collision assesment system failed to raise
a high-risk impact alert because non-suitable orbital information was being
used [Kelso09]. In 2016, the Schiaparelli module failed to autonomously land
in Mars, thus crashing with the surface after a free fall from a 3 km altitude.
Due to gyroscopes saturation coupled with on-board navigation data, an in-
correct altitude prediction was made and the thrusters were fired prematurely
[Tolker-Nielsen17]. The real possibility of failure during autonomous missions
causes mission planners to frequently opt for ground-in-the-loop interventions
for maneuvers executions.

Autonomous spacecraft maneuvering was considered a key enabling tech-
nology for most of NASA missions during the period 2013-2022, [NRC11].
Specifically, most of them are related with proximity operations around artifi-
cial bodies (e.g. satellites, space stations, debris, etc.) and Solar system bodies
(e.g. asteroids, comets, etc.). In some cases, the need for autonomy arises due
to the mission physical constraints. A good example is the Mars landing se-
quence where the 26 minutes lag due to two-way signal communication with
Earth is greater than the seven minutes of atmospheric entry. This causes
Mars entry, descent and landing operations to be fully autonomous. Simi-
larly, close proximity operations around bodies, many of which are beyond
Mars orbit, also require autonomous control due to the aforementioned trans-
mission delay. In other cases, the demand for higher autonomy levels can be
derived from the need to increase mission frequency, robustness and reliability.
This mainly includes low Earth orbit missions such as autonomous rendezvous
and docking and autonomous inspection and servicing. These needs are a di-
rect consequence of the increasing commercialization of space that has been
previously mentioned. The increasing mission frequency will made ground-in-
the-loop guidance and control very prohibitive due a high number of conflicts
and maintenance works. Moreover, the chances for human error will increase
as well. In that sense, [Starek16] declares that spacecraft autonomy can over-
come such drawbacks by enabling greater numbers and types of missions while
augmenting robustness and reducing risks. In turn, this will increase future
commercial and scientific return for space.

An autonomous guidance and control system is defined in [Starek16] as
having the capability to compute its own control commands on-board. It is
also convenient to distinguish between guidance and control. Guidance usually
refers to the determination of an optimal open-loop plan to transfer a vehicle
from an initial to a final destination. The control module closes the loop
by counteracting the deviations to the guidance plan, thus assuring the final
destination is reached. Consequently, because it has to be computed on-board
while the plan is being executed, the control module is required to be fully
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autonomous in the majority of cases. This causes that the control algorithm has
constraints on its execution times. On the other hand, the guidance plan admits
the possibility of being computed by Earth operators and uploaded to the
spacecraft before commencing the operation. In any case, to be autonomous,
the full guidance and control system should fulfil the following requirements.

• Efficient: given that a feasible control solution exists, the optimal one
is desired.

• Real-time implementable: control algorithms must be implemented
and executed in on-board processors in a reasonable amount of time.

• Verifiable: there should exist design metrics accurately describing the
performance and robustness under disturbances of guidance and control
algorithms.

1.1.2 Spacecraft proximity operations

As stated before, guidance and control for relative motion is the most promi-
nent example of autonomy needs. Mastering proximity operations enables
several space activities such as active space debris removal [Sasaki19], aster-
oid mining [Hein20], collision avoidance maneuvers [Lee18], on-orbit assembly
[Underwood15], satellite inspection [Bridges13] and space station resupplying
[Souza07] amongst others. Due to its practical applications and its autonomy
needs, spacecraft control in proximity operations is a topic with a vast and
rapidly evolving literature.

The initial demands for proximity operations began due to the Apollo pro-
gram. In order to reduce the payload mass, thus reducing launcher power
needs, the idea of lunar orbital rendezvous was conceived [Neufeld08]. This
concept was based on separating command and lunar modules when Moon’s
orbit is acquired. Then, the lunar module descends and lands on the Moon’s
surface while the command module remains on Moon’s orbit. Once lunar sur-
face operations are finished, the lunar module ascends to Moon’s orbit where
it rendezvouses and docks with the command module. Finally, the lunar mod-
ule is discarded and left in Moon’s orbit. Splitting the required hardware into
a main spacecraft and a small lunar lander avoids to carry dead weights at
several mission stages, thus saving payload mass.

However, at the time when the concept of lunar orbital rendezvous was pro-
posed in the early 1960s, no other mission have achieved successful rendezvous
and docking (not even in geocentric orbit). With the purpose of testing the
feasibility of this solution, NASA conceived the Gemini project. One of the
Gemini project goals was to demonstrate rendezvous and docking between two
vehicles on Earth’s orbit. Due to this sudden interest in proximity operations,
the initial work of [Clohessy60] described the relative dynamics between two
vehicles in orbit assuming Keplerian motion being one of them placed in a
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circular orbit. This led to the simplified Clohessy-Wiltshire equations. After-
wards, [Tschauner65] extended the previous model to two vehicles evolving in
Keplerian elliptic orbits. Both [Clohessy60, Tschauner65] assumed the vehicles
separation distance negligible with respect to the leader’s semi-major axis, thus
yielding linear relative models.

After the completion of the Apollo program, spacecraft proximity opera-
tions, such as rendezvous and docking, continued playing a vital role in low
Earth orbit space activities. A good example of this is the International Space
Station (ISS) which has rendezvoused a considerable number of times with
the Automated Transfer Vehicle, the Dragon, the Progress, the Space Shuttle
and the Soyuz amongst other spacecraft. Nonetheless, as mentioned before,
proximity operations needs are expanding quickly to other activities and en-
vironments. In that sense, the following proximity operations of current in-
terest (aligned with the previously mentioned space operational environment)
are identified: automated rendezvous for cubesats, on-orbit inspection, cislu-
nar space rendezvous and small bodies exploration. Each of these fields will
be subsequently expanded with their own state-of-the-art analysis within the
literature.

Cubesats revolution

Cubesats and, in a broader way, lightweight satellites (see Fig. 1.2) have
emerged in the last decade as a low-cost alternative to traditional bulky satel-
lites in some space activities (e.g. Earth observation [Foster17]). These minia-
turized architectures are specially suitable for megaconstellation applications
[delPortillo19], such as global satellite-based internet, as they can be mass pro-
duced and deployed in large numbers from a launcher. However, the hardware
of their attitude and orbit control systems is usually minimalist due to its
reduced and low-cost concept.

In the proximity operations domain, cubesats have the potential to provide
affordable satellite servicing (inspection and refuelling), justified by the gain in
extended mission lifetime of the serviced satellite. This presents a disruptive
change in the space operational environment as the servicing concept is nowa-
days restricted to vital missions such as the ISS or the Hubble telescope. This
restriction comes from the fact that only bulky and heavy cargo spacecraft pos-
sess rendezvous capabilities [Fehse03], thus precluding its use in a daily basis
due to the high operational cost.

Nonetheless, cubesats-alike architectures do not possess autonomous ren-
dezvous and docking capabilities. Efforts are being streamlined in that di-
rection. Specifically, NASA is planning the Cubesat Proximity Operations
Demonstration (CPOD) mission [Bowen15]. This mission will deploy two 3U
cubesats of 5 kg equipped with high performance processors, imaging and GPS
based navigation sensors, multi-thruster cold gas propulsion system and three-
axis attitude determination and control. The on-orbit test proximity scenarios
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involve maintaining along-track formation, circumnavigation and docking as
well as increasing and decreasing relative distance. For some scenarios, one
of the cubesats will not cooperate thus validating this concept for on-orbit
servicing scenarios.

Figure 1.2: Cubesats proximity operations. Credits: ESA.

The spacecraft control literature has been aware of the previous facts. One
of the major problems flagged, concerning cubesats automated rendezvous and
docking, is a probable lack of thrusters to exert three-axis orbit control indepen-
dently of their orientation. Attitude free orbit control can be ideally achieved
considering an orthogonal array of three pair of thrusters (being the ones in the
pair in opposite directions). This requires a minimum of six thrusters which
could be prohibitive for small satellites configurations as most of them does not
even have thrusters. The few cubesats with propulsive capabilities typically
have one or two thrusters and adjust their orientation with reaction wheels or
magnetorquers.

Consequently, for the majority of current small satellites with orbit control
capabilities, autonomous spacecraft rendezvous has to be achieved by means
of thrust-vectoring during the maneuver. That is, the attitude control system
has to act perform reorientation maneuvers in order to point the thrusters
at the commanded orbit control directions. As such, the attitude and orbit
control subsystems will be mutually coupled. This is a considerable difference
from traditional rendezvous maneuvering where the attitude control system
just compensates gravity-gradient and orbit control parasitic torques.

The previous issue has raised a considerable number of works developing
six-degrees of freedom (6-DOF) controllers for proximity operations. Refer-
ences [Filipe15] developed feedback-based adaptive tracking control for ren-
dezvous while [Wang12] applied the same approach for flight-formation. Both
works made use of dual quaternions as an orbit-attitude joint parameterization.
Backstepping control has been by several authors [Kristiansen08, Zhang12,
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Yan16] as the attitude controller is mastered by orbit control needs. Refer-
ence [Zhang12] also proposed an unusual six-thrusters cuboid layout capable
of providing simultaneous orbit-attitude control. Sliding mode control was
considered by [Terui98] to capture a tumbling piece of debris. Alternatively,
[Biggs18] employed quaternion-based covering maps to address 6-DOF motion
planning using basis functions and closed-loop kinematic feedback.

As the attitude control requirements answer to orbit control needs, the
works of [Naasz03, Wu09, Siva13, Moon16, Zhang20], concerning spacecraft
rendezvous and flight-formation, divided the problem into two distinct stages.
Firstly, they compute the required orbit control sequence which generates
thrusters orientation requirements. This computation has been done via linear-
quadratic regulators (LQR) [Wu09, Moon16], convex optimization [Siva13] or
particle swarm optimization [Zhang20]. These works considered a number
ranging from one to four thrusters combined with non-reactive attitude actua-
tors such as control moment gyroscopes, magenetorquers and reaction wheels.

Still, the previous approaches have some drawbacks. Feedback-based and
backstepping control are unable to guarantee path constraints satisfaction as
usual for proximity operations (e.g. approach corridors, collision avoidance,
safe zone). Sliding mode control is possibly an overconservative approach as
the controller follows a predefined surface. The problem decomposition into
two-stages seems a more natural solution, accounting for the different nature
of orbit and attitude controllers. However, the orbit control demands may be
unfeasible for attitude control capabilities, thus causing actuator saturation
which can eventually degrade orbit performance as the right orientations are
not achieved. This degradation can be avoided if both problems are again
integrated, thus considering integrated orbit-attitude planning.

The problem of thrusters vectoring is an attitude reorientation planning
problem. Reference [Leve15] defined two-dimensional reorientation profiles
considering limitations up to the jerk (desirable for the case of flexible struc-
tures). Linearized model predictive control (MPC) was employed for atti-
tude station-keeping purposes in [Hegrenæs05, Guiggiani15] though . The fact
that attitude dynamics has the flatness property (see [Fliess95]) was exploited
[Louembet09, Caubet15] to transform the non-linear continuous dynamics to
algebraic relations. This way, states and control can be parameterized and
embedded in an optimization problem to obtain optimal parameters values.

The conclusion is that achieving autonomous rendezvous and docking for
small satellites requires six-degrees of freedom control. The literature review
suggests an integrated orbit-attitude control framework could potentially im-
prove state-of-the-art works in terms of safety and control performance. To
this end, attitude reorientation works should be revisited. Six-degrees of free-
dom control is not only applicable for small satellites orbit operations as it has
also received attention to geostationary satellites station-keeping [Weiss15b]
and solar sailing [Gong09].
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On-orbit inspection

The concept of spacecraft inspection was initially conceived, in the early phases
of the space race, as a mean to survey potential space weapons from the other
superpower (United States/Soviet Union). This urgent need was soon partly
diffused as, in 1967, the Outer Space Treaty succeeded in compromising space
nations to not place mass destruction weapons in orbit and make a peaceful
use of space. In the last two decades, renew interest in achieving on-orbit
inspection capabilities has been put for both civil and military reasons.

Nowadays, space powers posses large networks of observation stations capa-
ble of taking infrared, optical and radar surveillance data from a considerable
number of objects and events [Butkus07]. However, ground-based sensors are
limited by atmosphere conditions, distance and relative geometry with respect
to the objects. Specifically, current imaging capabilities are very limited beyond
low Earth orbit and can be disrupted by both weather and lighting conditions.

The previous ground-based imaging limitations and the increasing num-
ber of strategical space assets such as the ISS and global navigation satellite
systems, motivates the need to verify the normal functioning of these (de-
bris/micrometeroids impact assessment, materials oxidation). From a military
point of view, recent 2020 reports1 pointed out that a pair of Russian satellites
were allegedly tailing a United States spy satellite. As such, on-orbit inspection
capabilities are again appealing to the military as a way to inspect suspected
unfriendly satellites.

Due to the military potential of on-orbit inspection, most of the demon-
stration missions and attempts have remained classified to the general public.
One of the known demonstrations consisted of a nanosatellite equipped with a
camera to inspect the ISS [Fredrickson03]. Furthermore, the United States Air
Force Laboratory has possibly carried out similar technology demonstrations
missions as well [Madison00].

The initial on-orbit inspection requirement was to maintain ranging dis-
tance and bearing with respect to the inspected satellite. However, this was
highly stringent, as [Tschauner65] showed that relative Keplerian dynamics are
generally unstable. Frequent counteraction maneuvering has a prohibitive cost
in terms of fuel consumption. To relax the previous needs, the hovering opera-
tion concept was conceived. Spacecraft hovering refers to maintain the inspec-
tor within a position volume with respect to the inspected satellite[Hope03].
Due to this definition, hovering also applies to spacecraft rendezvous missions
where there are hold-on phases awaiting mission control authorization to con-
tinue reducing the relative distance [Fehse03].

In the literature, the hovering problem was firstly studied in the context
of small bodies exploration [Sawai02, Broschart05]. As such, maintaining an
exploration probe flying over the same small body region allows to take high
resolution images of its surface. In the 2000s decade, the United States Air

1https://www.space.com/russian-spacecraft-stalking-us-spy-satellite-space-force.html
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Force translated the problem to geocentric missions under Keplerian-based
relative dynamics [Tschauner65]. Its main focus was to derive fuel-efficient
hovering control methods [Irvin07] as fuel is a non-renewable resource in space.

The hovering problem literature, under Keplerian assumptions, have used
two distinctive approaches: teardrop orbits (also known as the pogo method)
and constrained periodic relative orbits. The first method allows to intuitively
design the orbit based on simple geometrical principles which is very appealing
for Earth-based operators. However, an impulsive control has to be exerted
periodically. The latter method exploits the Keplerian relative motion, by
cancelling the unstable mode, which allows to maintain naturally (control free)
the relative formation.

The initial works on fuel-efficient hovering control were based on the con-
cept of teardrop orbits [Hope03, Irvin07, Irvin09]. A teardrop orbit is a natural
relative trajectory portion within the hovering volume (see the left image of
Fig. 1.3). This orbit has also the distinct property of intersecting itself at the
volume frontier, thus being closed. A single-impulse has to be applied at this
intersection to bounce back the satellite to the teardrop orbit. This method
has also been named as pogo [Hope03].

The pogo method presents advantages and drawbacks. Its main advantage
is that teardrop orbits can be constructed analytically and its design parame-
ters have intuitive physical meaning (distance from leader, size, teardrop pe-
riod). Nonetheless, two main drawbacks can be argued. Firstly, the teardrop
orbits repetition pattern is only possible if the leader’s orbit is circular, thus
Clohessy-Wiltshire linear time invariant equations [Clohessy60] are used. Fi-
nally, a single-impulse control has to be periodically applied each time the
spacecraft intersects with the volume frontier. This may impose an upper
limit to the duration of the inspection.

Recent works have tried to diminish the previous concerns within the pogo
formulation. Reference [Prince18] employed particle swarm optimization to
find the minimum fuel consumption teardrops subject to time and geometrical
bounds. The method was extended in [Bai20] to account for leader elliptical
orbits, thus resulting in a time-varying pattern of teardrops envelope. Closed-
loop control against J2 perturbation drift was considered in [Han20] under
the combination of natural drift arcs and constant thrust arcs smoothing the
bouncing instant.

The stability analysis of the Keplerian linear relative motion reveals the
existence of periodic relative orbits around the leader spacecraft [Inhalan02].
Specifically, if the reference orbit is circular, a keep-out safe ellipsoid around
the target can be established [Gaylor07]. In that spirit, [Deaconu12a] presented
a semi-definite programming (SDP) method to compute relative periodic orbits
within a fixed volume. As these constrained periodic orbits are natural (see
the right image of Fig. 1.3) the fuel consumption is theoretically null. Then,
when compared with teardrop orbits, the constrained periodic relative orbits
always reduce fuel consumption needs by design.
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Figure 1.3: Teardrop (left) and constrained periodic relative (right)
orbits.

Still, the constrained periodic relative orbits are more cumbersome to com-
pute and less intuitive geometrically than teardrops. Constrained periodic
orbits were further parameterized in [Deaconu13] through the vector of pa-
rameters. Parameterizing the relative periodic orbits was also considered in
[Bennet16]. The vector of parameters substitutes the cartesian state establish-
ing a periodicity state as well as providing insight into the orbit size, shape and
offset distance from the leader. The previous work was extended in [Deaconu15]
to solve the guidance problem towards a constrained periodic trajectory and
orbital rendezvous under safety constraints. The latter one employed the con-
cept of non-periodic constrained relative orbits. As mentioned before, the use
of natural constrained periodic relative orbits does not require any control
effort being an invariant set from the fuel consumption perspective.

Even under the vector of parameters it is not possible to directly check
the membership of a relative state to the constrained periodic relative or-
bits set. An algebraic description of the previous set in terms of multivariate
polynomials was provided by [Arantes-Gilz15]. Closed-loop controllers stabiliz-
ing the constrained periodic relative orbits set were designed by [Deaconu12b,
Arantes-Gilz19]. Specifically, [Arantes-Gilz19] achieved global stabilization,
under linear assumptions, through a three-impulsive sequence. Constrained
relative orbits also admits non-periodical forms [Deaconu15], though these are
only guaranteed to be within the hovering region for a finite period of time.
As such, they are not appealing for hovering purposes as their periodic coun-
terparts.

The previous vector of parameters approach has also some drawbacks.
Specifically, just checking if a relative periodic orbit is within the hovering re-
gion was computationally cumbersome. Initially, a semi-definite programming
problem has to be solved. By noticing that the hovering constraints were lin-



12 1.1 Motivation and challenges

ear in the Cartesian space (if the hovering region is a cuboid) [Arantes-Gilz15]
implicitized the previous linear constraints with respect to the true anomaly.
The outcome is a formal description, purely state- dependent, of the hovering
admissible set. The admissible set is composed of all the relative constrained
periodic orbits. In a further work [Arantes-Gilz19], the formal description of
the admissible set is exploited in order to design a global stable controller to
the hovering region based on the periodical application of a three-impulses
sequence.

Closed-loop control of periodic relative orbits has been addressed by means
of global stabilization. This is suitable in order to perform an approach phase,
in the proximity domain, to the constrained periodic orbits set. However, once
the spacecraft is inserted in this set, it may not be accurate and efficient for
station-keeping purposes. In the spirit of the pogo method, the constrained pe-
riodic relative orbits set could be bounced (note this is different with respect to
volume frontier bouncing). To this end, event-based control [Aström08], which
activates control based on a set of trigger rules, seems a promising technique
for the hovering phase problem.

The previous literature focuses in hovering a leader object for inspection
or a hold phase of a proximity maneuver (e.g. rendezvous). In that line,
collision avoidance between the leader and follower is passively ensured by the
design of the hovering region (e.g. by moving the cuboid along the in-track
direction). For safety reasons, the hovering region should not include the origin
if a physical object is hovered (it may be also the case where an artificial point
in space is hovered, thus the origin can be included). The consideration of
ultra-close proximity operations which requires an active control design for
obstacle avoidance [Richards02] is out of the scope of this dissertation.

The expansion to cislunar space

In the 2020s decade, humans are expected to return to the Moon under the
Artemis program [v.Ehrenfried20]. A vital part of these plans is the LOP-G
which is an outpost around the Moon to support human and scientific explo-
ration in deep space. Where to place the LOP-G requires an assessment of
different criteria such as reachability from Earth (through the Space Launch
System or the Falcon Heavy), lunar surface accessibility, station-keeping needs,
communications with Earth and thermal environment. In [Whitley16], several
LOP-G orbits were assessed according to previous figures of merit. The ana-
lyzed possibilities were lunar Keplerian orbits, lunar frozen orbits and Earth-
Moon system periodic orbits.

Lunar Keplerian orbits provide the most faster and fuel efficient lunar sur-
face access. However, due to its proximity with respect to the Moon’s grav-
ity dwell, low lunar orbits cannot be directly acquired by the Space Launch
System (nor possibly the Falcon Heavy). This could be fixed by considering
high apolune elliptic orbits but their station-keeping costs are very prohibitive
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(> 300 m/s per year). Lunar frozen orbits, which maintain some motion pa-
rameters invariant in average, reduce the station-keeping demands to ≈ 0 m/s
per year. In any case, Keplerian lunar orbits suffer frequent line-of-sight oc-
cultation with the Earth, thus making impossible continuous communication.

The Earth line-of-sight occultation can be totally avoided by some types
of periodic orbits arising in the Earth-Moon restricted three-body problem
(RTBP). These types are the halo and distant retrograde orbits, being both
of them accessible by the Space Launch System and its embarked Orion cap-
sule. Distant retrograde orbits appear to orbit the Moon in a retrograde man-
ner with a slight inclination with respect to the Earth-Moon motion plane.
Nonetheless, they are very far from the Moon, thus complicating lunar surface
access in terms of time and cost. Most of the halo orbits (higher inclined)
suffer the same drawbacks but amongst them, there is a small subset named
near-rectilinear halo orbits (NRHOs) characterized by a resilience against the
natural instability of halos [Zimovan17].

Near-rectilinear halo orbits visually appear to be nearly polar orbits with
a close perilune passage (∼ 3000 − 17000 km), thus allowing lunar surface
access travel in half a day. Combined with reasonable station-keeping costs
(≈ 10 m/s per year) they are deemed as the best option to place the LOP-G
[Whitley16]. As a matter of fact, the final destination would be a southern
L2 Earth-Moon NRHO with a 4:1 or 9:2 orbital period relation with respect
to the Moon synodic period. These resonances prevent the occultation of the
solar panels. The southern election would also allow large observation periods
for the lunar south pole, where there are evidences of ice [Hayne15], when it is
flew over at the orbit apolune.

In view of the previous plans, it is clear that a considerable number of space
operations will take place in cislunar space where RTBP dynamics are domi-
nant (see Fig. 1.4 for a practical application). This constitutes an unexplored
operational scenario in terms of proximity operations where the vast majority
of the applications has taken place in Keplerian geocentric or lunar orbits.

The RTBP, and more precisely the circular restricted three-body problem
(CRTBP), has been a very active topic in spacecraft interplanetary optimiza-
tion. The three-body problem periodic orbits are surrounded by stable and
unstable invariant manifolds [Koon06] which naturally makes a spacecraft es-
cape or approach them. In [Gomez04], the concept of connecting invariant
manifolds, to freely travel between orbits, was proposed. As such, low en-
ergy interplanetary transit through invariant manifolds was exploited in the
literature [Topputo05, Davis11, Chupin17].

Invariant manifolds connections were considered for rendezvous purposes by
[Sato15]. However, it was evidenced that if the vehicles were too close, that is
the case for proximity operations, relative-based guidance and control was more
fuel-efficient. This suggests that RTBP proximity shall be treated in a similar
way as Keplerian-based operations. The transition from Keplerian-based to
RTBP relative motion is not straightforward. The main arising difficulty is
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Figure 1.4: Orion approaching the Lunar Orbital Platform. Credits:
NASA.

that RTBP periodic orbits are expressed numerically instead of having closed
forms such as elliptical and circular Keplerian orbits.

Due to the numerical nature of the potential reference orbits, it was re-
alized that achieving analytical solutions of the RTBP relative dynamics (in
the same way as [Yamanaka02] provides a closed-form solution for Keplerian-
based relative motion), even for the linear case, was not possible. Consequently,
[Murakami15] realized solving RTBP linear relative motion would have to be
done through the numerical integration of the state transition matrix (STM).
A semi-analytical method based on an analytical approximation of the periodic
orbit was developed in the PhD thesis [Conte19]. Still, numerical integration
is required and the gain in computational time (∼ 0.5 s) may not be worthy
when compared to accuracy degradation which highly depends on the specific
orbit.

In contrast to the Keplerian relative motion scenario, three-body problem
close rendezvous strategies have not been extensively considered. The works of
[Bucci18, Lizy-Destrez19] provided insight on how establishing hold-on points
through the line-of-sight (LOS) corridor could allow passive safety trajectories
(though they are not a-priori computed). It was also evidenced that express-
ing the relative motion in the RTBP synodic frame hampers the line-of-sight
constraint. This issue was eased by [Franzini17, Franzini19a] works where
the RTBP relative dynamics were expressed in a local-vertical/local-horizontal
frame moving with the target orbit. Using the previous frame [Franzini19b]
computed glideslope (V-bar, R-bar) and multi-impulsive rendezvous trajecto-
ries.

The applied control approaches to RTBP automated rendezvous are very
simple in comparison to the employed in the Keplerian case. This literature
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gap is to be expected as its practical application of the LOP-G scenario was
recently announced. Moreover, the numerical nature of RTBP orbits makes
difficult to carry out rapid analyses. Fortunately, the extensive literature of
Keplerian-based proximity operations can be of help. Unsurprisingly, passive
safety trajectories [Breger08] and glideslope approaches [Ariba16] are inherited
concepts of Keplerian-based rendezvous. In that spirit, robust control RTBP
rendezvous seems a natural extension to the existing works. For that purpose,
the works in robust control of [Gavilan12, Louembet15, Mammarella18] may
be revisited.

The Artemis program has fostered calls for innovation in other spacecraft
operations rather than the proximity domain. As such, NRHO station-keeping
has been studied by [Bucci17, Guzzetti17, Newman18, Tos20, Muralidharan20].
Reference [Tselousova19] designed direct transfers from the Earth to NRHOs
in cislunar space. Similarly, [Trofimov20, Lu21] built transfers from NRHOs to
low lunar orbits and lunar surface. Moreover, NRHOs and lunar exploration is
also a breeding ground for cubesats (LUMIO project [Speretta18]) which can
be designed to carry out specific scientific activities.

Small bodies exploration

Small bodies such as asteroids, comets and dwarf planets are increasingly be-
coming a common destination for space missions. Studying these primitive
bodies enable a deeper understanding of Solar System history and planetary
processes. Additionally, asteroids can boost space travels as some concepts sug-
gest their internal water could be extracted and converted into fuel [Zacny13].

The first mission to ever orbit and land an asteroid was the Near Earth As-
teroid Rendezvous (NEAR) mission in 2001 [Holdridge02]. The NEAR Shoe-
maker visited 433 Eros which is the second-largest near-Earth object. This
pioneering mission demonstrated the feasibility of small bodies exploration in
proximity. This legacy continued with more missions in the 2010s decade. In
2010, JAXA’s Hayabusa mission achieved sample-return from 25143 Itokawa
[Yoshikawa15]. In 2014, ESA’s Rosetta mission, composed of an orbiter and a
small lander, rendezvoused and landed in comet 67P/Churyumov-Gerasimenko
[Glassmeier07]. Some years later, NASA’s Dawn mission visited and orbited
two extra-terrestrial destinations [Russell11]: the asteroid 4 Vesta and the
dwarf planet Ceres.

Since then, more missions have been recently executed while others are be-
ing planned. For example, JAXA’s carried out a second sample-return mission
(Hayabusa2) to asteroid 162173 Ryugu. The probe returned to Earth in late
2020. NASA OSIRIS-REx mission has also stowed samples of asteroid 101955
Bennu and will come back to Earth in 2021. In the 2020s decade there will
be missions such as Lucy which will visit Jupiter’s Trojan asteroids, Psyche
which will visit the metallic asteroid with the same name and DART which will
carry out an asteroid deflection test in 65803 Didymos [Cheng18]. To assess
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the effectiveness of the impact, a subsequent mission, named Hera, will survey
the asteroid.

Operations in the vicinity of small bodies are challenging due to the dom-
inance of their inhomogeneous gravity fields [Ceccaroni13]. Consequently, the
dynamical response, in the asteroid proximity, could lead to collision and es-
cape trajectories [Scheeres12]. Accordingly, active control has to be considered
in order to station-keep a closed orbit, thus avoiding collisions and escapes.
As in the lunar case, station-keeping fuel consumption can be reduced through
frozen orbits [Lei19]. Similarly to RTBP orbits families, [Doedel03], periodic
orbits can also be computed for inhomogeneous gravity fields [Yu12]. In both
cases, an accurate knowledge of the small body gravity field is assumed. Never-
theless, little dynamical information is usually available prior to the spacecraft
arrival. Earth sensors can only provide reliable estimations of orbit and spin.
The asteroid mass and shape (to a certain extent) can be determined during the
fly-by approach phase [Yoshikawa06, Jorda16]. However, the mass distribution
remains unknown. Due to the previous fact, the gravity field inhomogeneities
are unknown for preliminary mission design and the gravity parameters has to
be characterized on the fly.

Figure 1.5: Comet 67P/Churyumov-Gerasimenko predicted shape
(left) and image from Rosetta (right). Credits: ESA, NASA and
Philippe Lamy.

The characterization of an inhomogeneous gravity field is also challeng-
ing. There are two distinct regions with different behaviours, the exterior and
interior of Brillouin sphere. Let recall that the Brillouin sphere is the cir-
cumscribing sphere of the body. The external gravity field can be modelled
by means of spherical harmonics expansions [Balmino94], polyhedral shapes
[Werner96] or mass concentrations (namely mascons) [Chanut15]. Spherical
harmonics are an indirect way to model both mass and shape inhomogeneities.
The polyhedral models can model exact shapes but are based on an homoge-
nous mass distribution assumption. The mascons models are based on multiple
discrete mass points thus allowing to model arbitrary mass distributions by a
suitable weight and placement. Regarding the interior gravity field (suitable
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for surface proximity operations), [Takahashi13] demonstrated that any exte-
rior model can be transitioned to a transformed spherical harmonics expansion
centered outside the Brillouin sphere.

In the NEAR Shoemaker mission, the gravity field (up to 15th degree) was
determined by Earth’s ground control through navigation and optical data
[Miller02]. Achieving higher order gravity estimation requires on-orbit mea-
surements for long periods of time. For example, the geocentric GRACE mis-
sion iterates its Earth’s gravity model estimation after thirty days of collected
measurements [Tapley08]. These procedures were repeated in recent gravity
field estimations of Ceres (Dawm mission) [Konopliv18] and 101955 Bennu
(OSIRIS-REX) [Scheeres19].

Based on Kalman filters, autonomous navigation techniques have been ex-
tensively studied and analyzed by [Vetrisano16, Dietrich17, Gil-Fernandez18,
Pellacani18]. All of these works assume that the small body gravity field is a
known input to the orbit determination process. However, the inhomogeneous
gravity terms may not be available in the early mission phases. Fortunately, if
sensors sampling rates suffice to match the frequencies of the gravity low order
terms, the gravity parameters estimation could be added to the filters. Con-
sequently, only some of the gravity parameters, but the most dominant ones,
would be included within the filters computation. This may preclude oversiz-
ing the filter estimates which has a huge impact on computational burden. By
estimating the dominant gravity field inhomogeneities, the preliminary design
of frozen or periodic orbits is enabled. As a matter of fact, achieving a faster
autonomous gravity estimation process could small bodies exploration and ex-
ploitation by enabling early proximity operations, reducing the residence time
and allowing independent autonomous navigation.

Under the previous idea, the recent works of [Hesar15, Fujimoto16, Stacey18,
Biggs19] proposed different autonomous gravity determination techniques. Ref-
erence [Hesar15] developed a filtering technique to determine gravity from rel-
ative measurements between probes. In that spirit, [Fujimoto16] proposed to
eject and track (steoreoscopically) high albedo reflectors from two motherships,
thus enabling in-situ determination from high orbits. Alternatively [Stacey18]
employed an unscented Kalman filter (UKF) for simultaneous state and gravity
estimation. Its mission concept is based on a satellites swarm maintaining close
relative formation. Reference [Biggs19] employed an extended state observer to
subsequently match the estimated disturbance with the small body gravity and
sail degradation parameters through sequential batch least-squares. Its con-
cept is based on solar-sailing station-keeping around an artificial equilibrium
(which changes as the sail degradates).

Each of the previous approaches presents drawbacks in terms of their prac-
tical implementation. A relative-based sensing strategy can be dramatically
endangered if one of the probes suffers from malfunctions. The reflectors ejec-
tion and tracking strategy is limited by the amount of carried particles which
could be a bound the number of visited small bodies for a mission. However,
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the motherships guidance and control is eased as they can be maintained at
higher orbits which are more stable. As it is designed, the swarming concept
requires relative based control which is more challenging than absolute control.
Finally, the solar sails concept could theoretically enable limitless asteroid ex-
ploration though this propulsion device is still under feasibility studies.

In view of the previous facts, there seems to be a literature gap in demon-
strating absolute based guidance, navigation and control with gravity estima-
tion. This will enables an independent probe to carry out autonomous asteroid
exploration. As such, optical based landmark tracking measurements, which
is a well proven technology, could be considered [Li05]. This has attitude
control requirements as the optical devices shall point the asteroid surface
[Wibben12, Gaudet20]. Regarding orbit guidance and control, the problem
translates to station-keeping a closed orbit at the small body while undertak-
ing the gravity determination.

This builds a scalable architecture where more satellites can be added and
provide simultaneous estimation independently. The main drawback of the
previous concept seems to be the required active control for station-keeping
purposes. This also applies to orientation maintenance as asteroids gravity-
gradient could differ from Earth’s rules of thumb [Wang13]. Still, these con-
cerns may be diminished as station-keeping typically requires a low control
effort (at least in the short-term), allowing to use efficient devices such as
electric thrusters and reaction wheels.

1.1.3 The role of model predictive control

The term model predictive control (MPC) does not designate a specific control
strategy but rather an ample range of control methods which make explicit use
of a model of the process to obtain the control signal by minimizing an objective
function over a finite receding horizon [Camacho04]. In MPC, a model of the
process is used to predict the future plant outputs, based on past and current
values and on the proposed optimal future control actions. These actions are
calculated by the optimizer taking into account the cost function (where the
fuel or the energy consumption and the future tracking error are considered)
as well as the constraints.

The implementation of an MPC scheme relies on an optimization problem
which has to be solved on-line. Thus, at each sampling time, the optimizer ob-
tains an optimal control sequence along the receding horizon, but only the first
control action of the sequence is indeed applied. After that, the initial condition
is updated with the measured state and the prediction horizon is usually slided
forward in time to keep a constant prediction horizon [Mattingley10]. Under
these new conditions, the optimization is solved and the control sequence is
updated. This process could be infinitely repeated over time is equivalent to
a closed-loop feedback controller. This imparts MPC the ability to tackle dis-
turbances and mitigate, to a certain extent, the potential error growth. As a
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matter of fact [Mayne00] demonstrated, under certain assumptions, that MPC
leads to close-loop stability and target convergence. An illustration of MPC
for reference tracking can be seen in Fig. 1.6.

The model predictive control approach was firstly employed for chemical
processes in industrial plants and oil refineries in the 1980s [Qin03]. Model pre-
dictive control enabled a reduction in the operational safety margins because
its formulation explicitly accounts for process constraints. This allows to oper-
ate the process closer to its operational limits, with a high degree of accuracy,
which augmented its efficiency. Due to the previous facts, [Garćıa89] concluded
that MPC was the most suitable control technique for complex multivariate
processes due to its flexible constraints-handling capabilities. Since then, it
has been widely employed in aerospace [Gavilan15], automotive [Hrovat12],
economics [Herzog07], electrical [Di Giorgio14] and robotics [Wilson16] appli-
cations amongst others.

Figure 1.6: Model predictive control illustration.

Model predictive control presents some relevant differences with other state-
of-the-art control approaches such as linear-quadratic-regulators (LQR) and
proportional-integral-derivative (PID) state feedback. The LQR scheme uses
the same control sequence attached to a fixed time window whereas MPC com-
putes new control solutions due to its moving time horizon. As a consequence,
MPC usually considers smaller time windows than LQR. This may lead to
sub-optimal solutions. The LQR is also limited to linear systems while the
generic form of MPC could support non-linear models. With respect to PID
controllers, which only takes into account the current and past state, MPC
has the benefit of anticipating future events by its predictive nature. Fur-
thermore, the LQR and PID approaches do not consider constraints within
their formulation while MPC is able to take into account both control and
state constraints. However, MPC shall guarantee the optimization problem
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feasibility. From the computational perspective, PID is very efficient as only
the current state has to be accounted in the control law. The LQR approach
is more cumbersome, but not prohibitive, as its gain is adjusted through an
algebraic expression (infinite-horizon) or the integration the continuous-time
Ricatti differential equation (finite-horizon). Finally, due to its optimization
approach MPC could present high computational burden if a continuous non-
linear optimization problem is directly considered. Such issue could be partly
mitigated via discretization and linearization methods in order to obtain a
tractable static program. Table 1.1 summarizes these state-of-the-art control
methods.

Method Optimality NL2 Horizon Constraints Comp. burden3

MPC Sub-optimal4 Yes Moving Yes High/medium
LQR Optimal No Fixed No Medium
PID No Yes Instant No Low

Table 1.1: Characteristics of MPC, LQR and PID.

Let analyze the details concerning the MPC optimization problem for a
guidance and control application. In that application, the goal is to find an
optimal control sequence steering the state from an initial point to a terminal
set, in a finite period of time (namely the prediction horizon), while respecting
the system dynamics, path constraints and control bounds. The underlying
optimization problem of the associated MPC scheme can be mathematically
expressed as problem (1.1)

minimize
u(t)

J(u(t)) = gf (x(tf )) +

∫ tf

t0

g(x(t),u(t))dt,

subject to
∀t∈[t0,tf ]

ẋ(t) = f(t,x(t),u(t),w(t)),

x(t0) = x0,

x(tf ) ∈ Xf ,

x(t) ∈ X (t),
u(t) ∈ U(t),

(1.1)

where t ∈ R is time, x ∈ Rn is the state, u ∈ Rm is the control, w ∈ Rp is
the disturbance and f : Rn+m+p+1 → Rn is the prediction model (which may
differ from reality). The sets Xf , X and U represents the terminal set, path con-
straints and control bounds respectively. The final time fulfils tf = t0+T where
T is the prediction horizon. Many successful MPC implementations neglect the

2NL ≡ non-linear.
3Comp. burden ≡ computational burden.
4Optimal for the linear case.
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effect of the disturbances though its consideration in the optimization problem
could lead to explicit robust MPC formulations [Mayne05, Calafiore06].

An extensive survey of numerical methods to solve the optimal control
problem (1.1) can be found in [Betts98]. In that publication, two distinct
methodologies namely the direct and indirect optimization techniques were
stated. Direct methods transform the continuous optimization problem (1.1)
into a finite tractable static program by means of discretization [Hull97]. The
outcome is a non-linear programming (NLP) optimization problem. On the
contrary, indirect methods transforms the problem, in an equivalent way, to
a two-point boundary value problem [Bryson75]. For autonomous operations,
the direct method has been extensively preferred because there are available
very efficient solvers, from the numerical perspective, for static programs. On
the contrary, the indirect method two-point boundary value problem involves
the addition of auxiliary variables (namely the adjoints) which are difficult to
interpret. This fact complicates the construction of the initial guess which, if
chosen wrongly, could endanger the convergence.

Unfortunately, even the direct technique is oftentimes difficult to implement
in a practical MPC mainly for two reasons. First, the underlying optimization
problem is frequently non-linear and therefore time-consuming; thus, real-time
implementation becomes a challenge. This is sometimes referred to as the in-
stantaneity problem. In addition, there might be no guarantee to find a feasible
control solution (which could compromise the safety of the system). This is
called the feasibility problem. As technology evolves, both the instantaneity
and feasibility problems have become solvable when using certain techniques
or if the models are adequately simplified [Siguerdidjane17]. Thus, MPC is
considered a cornerstone control technique for spacecraft guidance and control
[Starek16].

Overcoming the MPC instantaneity problem for an autonomous space sys-
tem requires that the computational time of solving problem (1.1) has to be
negligible when compared to the sampling rate. In that sense, it has to be noted
that satellite on-board computers are limited by low power processors (to save
energy) which are usually obsolete when compared with the most common per-
sonal computers available in the market (due to a long preflight certification
process against radiation). The previous fact suggests that MPC optimization
problem should be limited to convex forms such as linear, quadratic, second-
order cone or semi-definite programs for which there exist efficient solvers, or
what is better, to problems whose analytical solution can be found. Con-
sequently, it is convenient to choose (or transform) the cost and constraints
as linear or quadratic functions. This covers the minimization of fuel con-
sumption which is directly related to control effort. If the control bounds,
path constraints and terminal sets are non-linear but convex, these can be lin-
earized by an approximation with hyperplanes. Moreover, some special cases
of non-convex constraints can be convexified through relaxation techniques.
This applies to non-convex obstacle avoidance [Jewison15] and precluding the
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thrusters shutdown [Açıkmeşe11].

The system dynamics is not on the hands of the mission designer. Space-
craft dynamics is subject to gravity which is non-linear due to its inverse rela-
tion with the squared distance to the massive body. Non-linear dynamics yields
a non-linear optimization problem where both the state and control have to
be simultaneously treated as decision variables (though an iterative scheme,
by using the last state, could be considered [Lu13]). As a consequence, MPC
has been extensively applied to autonomous spacecraft proximity operations
or guidance tracking (e.g. station-keeping) where the dynamics is linear with a
high degree of accuracy. In proximity operations, the close distance to a target
allows to use linear relative dynamics [Tschauner65] around the target motion.
Similarly, for guidance tracking, the dynamics can be linearized around the
desired reference. This assumes that the control will be effective enough to
maintain the state in the vicinity of the reference.

Under the previous motivation, there is a huge number of works using
MPC for spacecraft rendezvous and station-keeping purposes. A thought-
ful compendium of MPC-based spacecraft rendezvous, up to the year 2015,
can be found in [Hartley15a]. A breakthrough happened in the year 2002 as
[Yamanaka02] provided an analytical state transition matrix for the Tschauner-
Hempel equations, [Tschauner65]. This allowed to propagate the Keplerian lin-
ear relative motion without the need numerical integration. The early work of
[Richards03] demonstrated the feasibility and benefits of applying MPC to the
rendezvous problem for operational scenarios such as the glideslope and line-
of-sight corridor approaches. Reference [Breger08] demonstrated how passive
safety abort trajectories can be considered within an MPC formulation. Ref-
erence [Cairano12] considered the rendezvous problem with a tumbling target.
The previous results were fused in [Hartley12] to provide a full MPC-based ren-
dezvous practical implementation which demonstrated to overcome, in terms
of efficiency, the traditional preflight maneuvers libraries.

Practical implementations of MPC algorithms in on-board flight computers
has been validated in [Hartley15b, Arantes-Gilz18]. The realistic considera-
tion of controlling the thrusters valves opening times was done in [Vazquez17].
Other works aimed to provide robust MPC controllers against navigation un-
certainties and impulses mishaps [Gavilan12, Louembet15, Mammarella18].
Reference [Gavilan12] employed the chance-constrained approach to assure
probabilistic satisfaction of constraints. Reference [Louembet15] generated
robust worst-case scenario plans to diminish the terminal spread due to the
errors. Reference [Mammarella18] considered the tube-based approach where
the set of uncertain trajectories is characterized and is kept within constraints
bounds.

Orbit-attitude station-keeping is also a potential field for MPC forms. For
example, MPC has been used for orbit-attitude station-keeping and momen-
tum management of geostationary satellite [Weiss15a, TayyebTaher17]. Non-
linear MPC forms have been recently applied to halo orbits station-keeping
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[Kalabic15, Misra18, Subudhi20]. Due to atmospheric drag, low-Earth orbit
satellites need frequent raising maneuvers that can be tackled through MPC
[Tavakoli14]. Attitude control station-keeping, where a specific orientation has
to be maintained, has also explored the use of MPC [Hegrenæs05, Vieira11,
Leomanni13]. Furthermore, MPC schemes have been employed by a significant
number of works [Manikonda99, Abdulrahman12, Breger08, Lim18, Xu19] for
flight-formation purposes.

It can be concluded that model predictive control have been extensively
analyzed in the context of space operations (even under explicit robust forms).
Its main advantage is its flexibility when handling several types of constraints
corresponding to different scenarios. Space operations may also benefit from
novel concepts such as learning-based MPC [Hewing20]. The learning-based
MPC estimates the model parameters on-line, thus updating the prediction
model of the MPC optimization problem, which increases the control accuracy
over time. This is specially appealing for systems where there is a large initial
uncertainty in the model parameters.

1.2 Objectives of the Thesis

The overarching goal of this thesis is to produce innovative results in the field of
spacecraft proximity operations. To this end, several forms of model predictive
controllers have been developed for various scenarios of interest in proximity
operations. The ultimate goal is to augment these operations autonomy by
enhancing some control capabilities or figures of merit over other state-of-
the-art controllers. This broader mission can be divided into the following
requirements:

• Objective 1: to develop optimal closed-loop controllers. Closing the
control loop guarantees that the controller is able to cope with distur-
bances at a certain extent. This guarantees that the mission phase will be
fulfilled without human intervention which demonstrate the autonomy of
the proposed solution. The control sequence shall also reduce the control
effort as much as possible. Being fuel a limited resource in space, the
previous consideration would result in higher reserves for the subsequent
operations.

• Objective 2: to assess the control accuracy and efficiency of the de-
veloped algorithms. This refers to compare the designed controllers with
other state-of-the-art methods whenever is possible. This allows to quan-
tify the advantages and drawbacks of one methodology over another. The
previous information is very useful because mission designers may use one
controller or the other depending on their own preferences.

• Objective 3: to guarantee the problem feasibility and maintain a low
or moderate computational burden. Being expected to be executed on-



24 1.2 Objectives of the Thesis

board, while the maneuver is ongoing, the control program should be
always feasible from a mathematical perspective. For the same reason,
the control program computational times should be low enough so that
the delay between the need of a new control plan and its application is
almost negligible.

• Objective 4: to consider scenarios of interest in proximity operations
as per Section 1.1.2. Specifically:

– Six-degrees of freedom spacecraft rendezvous: this refers to solve the
integrated orbit-attitude control problem in order to achieve space-
craft rendezvous under Keplerian assumptions. When few thrusters
are available, the spacecraft orientation has to be changed in order to
apply translational control in the desired direction. Consequently,
the orbital and attitude control systems have to be integrated in
order to complete the rendezvous operation.

– Near-rectilinear halo orbits rendezvous: proximity operations for
periodic orbits in the restricted three-body problem is gaining mo-
mentum in the literature. In opposition to Keplerian orbits, the
RTBP orbits are parameterized numerically. This fact precludes
the obtention of a closed-form analytical expression of the transition
matrix for the linearized motion. Currently, the practical applica-
tion of RTBP operations is to rendezvous with a spacecraft in an
Earth-Moon near-rectilinear halo orbit.

– Spacecraft hovering phases: in-orbit inspection or rendezvous hold-
on phases require to maintain the relative distance with the leader
(hovering). Usually, the hovering phase lasts for several orbital pe-
riods which may have a very negative impact on fuel consumption.
This can be partially mitigated by exploiting the periodic orbits of
the linear Keplerian relative motion. Still, the orbital perturbations
will make the spacecraft drift away from the previous orbits. Con-
sequently, dealing with these perturbations requires a smart control
strategy.

– Orbit-attitude station-keeping around small bodies: the early phases
of small bodies exploration are characterized by a high degree of
dynamical uncertainty. The main unknown is the small body in-
homogeneous gravity field which is the predominant perturbation
in low orbits. As a consequence, orbit-attitude station-keeping has
to be guaranteed while undertaking the small body gravity estima-
tion in-situ. In the past, this process is carried out conservatively
with a lengthy characterization phase prior to the descend into a
low orbit. Currently, the combination of novel control and learning
techniques may enable orbiting closer to the small body from the
very beginning.
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1.3 Solution approach

The solution approach consists in the algorithmic development of a specific
model predictive controller for each scenario in Objective 4. The particulari-
ties and current state-of-the-art, of each scenario, cause the specific approach
to vary between them (e.g. event-based predictive control is applied to the
spacecraft hovering phases scenario).

The generic methodology, followed in this dissertation, is described in
Fig. 1.7. Firstly, a detailed continuous optimization guidance and control prob-
lem is posed. As per Objective 1, the previous problem shall be recursively
solved along the trajectory in order to close the control loop. There exist state-
of-the-art techniques (e.g. collocation methods) able to solve non-linear contin-
uous optimization problems. However, those techniques are characterized by
a high computational burden which is in conflict with the low computational
burden requirement of Objective 3. Moreover, equality constraints on the ter-
minal state may be a source of infeasibility when the control horizon is slided
forward in time (the equality constraint spans over a finite period of time). To
overcome the previous issues, dynamics linearization, constraints relaxation
(transforming constraints into penalty costs precluding potential infeasabili-
ties) and time discretization techniques are simultaneously applied to reduce
the continuous optimization problem. The result is a static control program.

It is desirable that the static program is expressed in terms of a linear
programming (LP) or a quadratic programming (QP) form in the decision
variables. Currently, there are very computationally-efficient state-of-the-art
solvers (e.g. Gurobi [Gurobi14]) for linear or quadratic programming. To
obtain these forms of the static control program, the dynamics, constraints and
Objective function have to be posed linearly or quadratically. The constraints
and Objective function can be designed as such which covers a wide variety
of cases. Additionally, linearizing the system dynamics is adequate for the
proximity operations scenarios of Objective 4. The previous step would result
in a linear time-varying system which can be solved explicitly by using the
state transition matrix and integrating the control [Kamen10]. Depending on
the scenario, the dynamics is linearized with respect to the orbit of an orbiting
object (assuming its orbit is known) or a guidance reference (that has to be
tracked).

To summarize, the MPC updates its control sequence by solving a linear
or quadratic program. The main motivation of closed-loop MPC is to cope
with disturbances (to a certain extent) that will cause an open-loop trajec-
tory to deviate from its initial plan. In order to do so, the developed con-
trollers are numerically tested against the high-fidelity system dynamics. The
high-fidelity dynamics includes control mishaps and unmodelled perturbations
(partly caused by the linear dynamics assumption). The testing process ends
by identifying relevant figures of merit5 which also allow to compare the pro-

5The computational times of this thesis are measured using a i7-8700 3.2 GHz CPU.
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posed approaches of this dissertation with other state-of-the-art controllers.
This completes Objective 2.

Figure 1.7: Diagram of the generic solution approach.

1.4 Contributions

The following summary comprises the original contributions of this thesis:

• Contribution 1: an integrated six-degrees of freedom model predictive
controller for Keplerian-based rendezvous. The algorithm is valid for any
chaser spacecraft equipped with impulsive thrusters and a reaction wheels
array. It also allows to rendezvous with targets placed in elliptic orbits.
The numerical approach is divided between the open-loop and closed-
loop computations. The open-loop plan (can be viewed as guidance)
is computed by solving a non-linear program. Linearizing the system
over the previous solution, the loop is closed with a quadratic program
in terms of incremental variables. The Keplerian linear relative motion
transition matrix and the attitude flatness property are exploited in order
to define the optimization programs. Results show the capability of the
closed-loop control to complete the rendezvous maneuver in the presence
of impulses mishaps. This contribution lead to the publication of the
journal article [Sanchez20b] and the conference proceeding [Sanchez18].

• Contribution 2: a stochastic robust model predictive controller for
near-rectilinear halo orbits rendezvous. The restricted-three body prob-
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lem linear relative motion is used as the prediction model. The con-
troller is robustified using the chance-constrained approach which en-
sures constraints (line-of-sight) satisfaction in a probabilistic sense. This
is achieved by tightening the constraints so that a high percentage of
random realizations fulfil the constraints. The disturbance statistical
properties are inferred on-line via a disturbance estimator. The result-
ing optimization is a deterministic quadratic program that is recursively
solved on-line with updated estimations of the disturbance, thus closing
the loop. For a cislunar rendezvous scenario and under thrusters mishaps,
the results show the superiority in terms of constraints satisfaction of the
robust approach with respect to a non-robust model predictive controller.
This contribution is published in the journal article [Sanchez20a].

• Contribution 3: an event-based predictive controller for the hover-
ing phase of spacecraft rendezvous. The resulting algorithm allows to
maintain relative formation between a leader in an eccentric orbit and
a follower equipped with impulsive thrusters. At high level, the control
strategy aims to maintain the follower within the set of constrained (in
the hovering region) periodic relative orbits, namely the admissible set.
In order to do so, predefined trigger rules decide when a single-impulse
control has to be exerted. The triggering decision is based on membership
and proximity indicators to the admissible set. The algorithm compu-
tational footprint is minimal since the most complex operation is the
computation of the roots for an univariate polynomial. The results com-
pare the event-based controller with the recent global stable controller of
[Arantes-Gilz19]. The developed event-based strategy outperforms the
global one in terms of control accuracy and computational burden. This
contribution lead to the publication of the journal article [Sanchez21a]
and the conference proceeding [Sanchez19].

• Contribution 4: a learning-based model predictive controller for orbit-
attitude station-keeping in the vicinity of a small body. The control goal
is to maintain a circular orbit with a stationary attitude, thus allowing
for camera line-of-sight with the small body surface. The technical chal-
lenge is that the small body inhomogeneous gravity field is unknown.
The learning-based approach combines unscented Kalman filtering with
model predictive guidance and control. Using sensors measurements, the
Kalman filter estimates the current state and the inhomogeneous grav-
ity field parameters. The previous outputs feeds the model predictive
guidance and control block. The guidance generates a reference to be
subsequently tracked by a control program. For both orbit and attitude,
the control works under a linearized model around the reference which
yields a quadratic control program. The possibility of speeding up the
gravity estimation with a satellite constellation concept is also explored.
For the asteroid 433 Eros, the results shows the improvement in terms
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of orbital reference tracking accuracy and attitude control effort for the
learning-based algorithm with respect to a non-learning one. The constel-
lation concept also improves the gravity estimation process with respect
to single satellite missions. This contribution lead to the submission of
the journal article [Sanchez20c] and the publication of the conference
proceeding [Sanchez21b].

1.5 Outline of the document

This dissertation is structured as follows:

• Chapter 2 presents the orbit-attitude dynamics models used throughout
this document. For the orbital dynamics, the linear relative dynamics are
emphasized. The orbit and attitude actuators models are also described.
This includes the possible addition of control mishaps.

• Chapter 3 develops a six-degrees-of-freedom model predictive controller
for spacecraft rendezvous. The solution approach exploits the transition
matrix of Keplerian linear relative motion and the attitude flatness prop-
erty. This leads to an open-loop non-linear program. The control loop
is closed by linearizing the system around the initial open-loop solution
which yields a quadratic program. The simulations test the controller
performance, under the presence of impulses mishaps, for a cargo space-
craft and a lightweight satellite.

• Chapter 4 develops a robust controller to rendezvous with a near-
rectilinear halo orbit. The dynamics are modelled using the linear relative
motion of the restricted three-body problem. The model predictive con-
troller is robustified using the chance-constrained technique which assures
constraints satisfaction in a probabilistic sense. Finally, an on-line dis-
turbance estimator is developed so the disturbances statistical properties
are inferred. The robust MPC is compared against a non-robust MPC for
a rendezvous operation with a southern Earth-Moon L2 near-rectilinear
halo orbit.

• Chapter 5 presents an event-based predictive controller for spacecraft
rendezvous hovering phases. The concept of natural constrained periodic
relative orbits is employed in order to reduce fuel consumption needs.
Combining a single-impulse control law and suitable trigger rules, the
event-based controller aims to maintain the state within the previous set
of constrained periodic orbits. The result is an aperiodic control algo-
rithm with a low computational footprint. The invariance of the single-
impulse is assessed using hybrid impulsive systems theory. The numerical
results compare the event-based algorithm with a periodic global stable
controller.
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• Chapter 6 introduces a learning-based model predictive control for
orbit-attitude station-keeping in the vicinity of a small body. This method
(learning-based MPC) is applied by combining an unscented Kalman fil-
ter with model predictive guidance and control. The filter is used to
estimate the state and gravity parameters, thus updating the prediction
model employed in the guidance and control block. The guidance gen-
erates a reference that is subsequently tracked by a quadratic control
program. In order to speed up the gravity estimation process, a satel-
lite constellation concept is also presented. The simulations show the
superior performance, in terms of control accuracy, of the learning-based
MPC with respect to a non-learning MPC. The constellation concept is
also shown to achieve a faster gravity estimation convergence than just
using a single satellite.

• Chapter 7 ends this document with a resume and conclusions with
respect to the presented research work. The technical contributions of the
thesis are also highlighted. Finally, potential future research directions
are pointed out.

• Appendices are devoted to present some of the auxiliary tools employed
in this thesis (which are not original contributions per se). These include
B-splines, periodic orbits in the circular restricted three-body problem,
an implicitization method for trigonometric functions and the description
of a global stable controller for the hovering phase.
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Chapter 2

Spacecraft dynamics

We can lick gravity, but
sometimes the paperwork is
overwhelming.

Wernher von Braun
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The spacecraft dynamics, under rigid body assumptions, can be divided
into the translational and rotational motions. There exist several possible
representations for each motion. This chapter will present some of them with
special emphasis in relative motion models.

The dynamics is influenced by external forces and control actuators. As
the presented dynamical systems will be employed for model prediction in the
subsequent chapters, convenient simplifications, capturing the most relevant
effects, are made.

2.1 Translational motion

In this section, the translational motion is presented for both the absolute and
relative cases. The absolute motion is usually described with respect to an
inertial frame and it is especially convenient for high-fidelity propagation. On
the contrary, the relative motion is described with respect to a frame attached
to a leader spacecraft. As such, the previous description is widely employed in
proximity operations purposes. The motion is controlled by means of thrusters
whose modelling is discussed.

2.1.1 Absolute motion

The spacecraft absolute motion can be described in terms of its Cartesian
components, classical orbital elements or modified equinoctial elements (MEE).
The Cartesian representation directly considers the spacecraft position and
velocity. The orbital elements provide useful insight on the trajectory shape
and orientation. The modified equinoctial elements prevents some singularities
arising with classical orbital elements.

Cartesian coordinates

Let define an inertial frame I : {OI , iI , jI ,kI} where O is the center of mass
of the main body (e.g. Sun, planet, small body), the directions iI and jI
define the main body equatorial plane and kI aligned with its rotation axis
(assumed as constant). Let also define a generic orthogonal coordinate system
L : {OL, iL, jL,kL}. The spacecraft motion can be characterized by means
of its position r and velocity ṙ with respect to the main body (e.g. a Sun,
a planet) in the frame L. Generally, the frame L will rotate with angular
velocity ωωωL/I and acceleration ω̇ωωL/I with respect to the inertial frame . Using
the previous definitions, the spacecraft equation of motion is

r̈+ ω̇ωωL/I × r+ 2ωωωL/I × ṙ+ωωωL/I × (ωωωL/I × r) =
F

m
, (2.1)

where the derivatives have been taken with respect to the frame L. The vector
F is the external force and m is the spacecraft mass. In this dissertation, the
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spacecraft mass evolution is not studied as it is assumed the thrust force can
be adjusted to provide the required control acceleration. The external force
is composed of the main body Keplerian force, the orbital perturbations Fp

(which depends on the spacecraft state) and the exerted thrust Fu as

F = −µmr

r3
+ Fp(r, ṙ) + Fu, (2.2)

where µ is the main body standard gravitational parameter.

In orbital mechanics, an usual choice is to attach the frame L to the satellite
center of mass as

OL ≡ r, iL =
r

∥r∥2
, jL = kL × iL, kL =

r× ṙ

∥r× ṙ∥2
, (2.3)

where iL is the radial direction, jL is the tangential direction and kL is the
normal direction. The radial and in-track directions define the orbital plane
while the normal direction is the out-of-plane component. The definition of
the directions iL, jL and kL may be swapped amongst them depending on the
specific application.

Classical orbital elements

The classical orbital elements are invariant quantities of the Keplerian motion.
They are defined by ααα = [a, e, i,Ω, ω,M ]T where a is the semi-major axis, e is
the eccentricity, i is the inclination, Ω is the right ascension of the ascending
node, ω is the argument of periapsis and M is the mean anomaly (it is also
possible to use either the true anomaly ν or the eccentric anomaly E instead).

Figure 2.1: Classical orbital elements.

The classical orbital elements dynamics is stated in terms of the Gauss
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variational equations

d

dt
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where p is the semi-latus rectum, h is the modulus of the Keplerian orbit
angular momentum and b the orbital semi-minor axis which are related to the
classical orbital elements as

p = a(1− e2), h =
√
pµ, b = a

√
1− e2. (2.5)

The vector a = [ar, at, an]
T , is composed of the perturbing accelerations to the

main body Keplerian motion. The subindexes {r, t, n} represent the radial,
tangential and normal directions which coincide with the frame defined in
Eq. (2.3). Splitting the non-Keplerian perturbation into natural ap and control,
u, accelerations the Eq. (2.4) can be conveniently expressed as

α̇αα = c(ααα) +A(ααα)ap(ααα) +A(ααα)u. (2.6)

However, the orbital elements dynamics is singular for circular e = 0 or equa-
torial orbits i = 0, π. Note that for a circular orbit, the argument of periapsis
is not defined as there does not exist an apse line. For an equatorial orbit,
there is no ascending node, therefore its right ascension cannot be defined.

Modified equinoctial elements

The modified equinoctial elements, α̃αα = [p, f, g, h, k, L]T , were conceived in
[Walker85] to avoid the singular cases of the classical orbital elements. The



2.1 Translational motion 35

transformation from the classical orbital elements to modified equinoctial ele-
ments is

p = a(1− e2),

f = e cos(ω +Ω),

g = e sin(ω +Ω),

h = tan(i/2) cos(Ω),

k = tan(i/2) sin(Ω),

L = Ω+ ω + ν.

(2.7)

Accordingly, the Gauss variational equations for modified equinoctial elements
are

d

dt
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where

w = 1 + f cosL+ g sinL, s =
√

1 + h2 + k2. (2.9)

The modified equinoctial elements dynamics can also be compactly expressed
as

˙̃ααα = c̃(α̃αα) + Ã(ααα)ap(α̃αα) + Ã(α̃αα)u. (2.10)

Note that the modified equinoctial elements have a singularity for retrograde
equatorial orbits, i = π, due to the transformation defined in Eq. (2.7). How-
ever, this type of orbit is rarely used in practical applications.

The MEE can be transformed to the Cartesian inertial coordinates, r and
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ṙ, as

r =
r

s2

(1 + α2) cosL+ 2hk sinL
(1− α2) sinL+ 2hk cosL

2h sinL− 2k cosL

 ,

ṙ =

√
µ

√
ps2

−(g + sinL)(1 + α2) + 2hk(f + cosL)
(f + cosL)(1− α2)− 2hk(g + sinL)

2h cosL+ 2k sinL+ 2fh+ 2gk

 ,

(2.11)

where

α =
√
h2 − k2, r = p/w. (2.12)

Orbital perturbations

The natural non-Keplerian perturbation vector, ap, is composed by the follow-
ing terms

ap = agrav + abodies + adrag + aSRP. (2.13)

where agrav is the acceleration due to the gravity inhomogeneities of the main
body, abodies is the Keplerian gravity due to third-bodies, adrag is the accelera-
tion due to the atmospheric drag and aSRP is the perturbing acceleration due to
the solar radiation pressure. Each one of these terms is further explained below.

Inhomogeneous gravity: the Keplerian motion assumes that the main body
is a solid sphere with an homogeneous mass distribution. Nonetheless, this
never happens in nature. Planets are oblate bodies due to their own rotation
while small bodies (e.g. asteroids, comets) may present highly irregular shapes
or considerable spatial density variations (contact binary asteroids). A clas-
sical model for the gravity field inhomogeneities acceleration is the spherical
harmonics expansion

agrav =

nmax∑
n=2

n∑
m=0

µ

r2

(
Re

r

)n


−(n+ 1)P̃

(m)
n (C̃nm cos(mλ) + S̃nm sin(mλ))

m

cosϕ
P̃

(m)
n (−C̃nm sin(mλ) + S̃nm cos(mλ))

cosϕP̃
(m)′
n (C̃nm cos(mλ) + S̃nm sin(mλ))

 ,
(2.14)

where the satellite coordinates are expressed in terms of spherical coordinates
{r, λ, ϕ} expressed in a fixed frame to the main body. The term r is the
distance with respect to the main body center of mass, λ is the longitude (angle
with respect to a fixed direction in the main body equatorial plane) and ϕ is
the latitude (elevation with respect to the main body equatorial plane). The
spherical harmonics coefficients have been expressed in terms of the normalized
form as C̃nm and S̃nm. The zonal coefficients correspond with C̃n0 and are
implicitly included in the summation (e.g. J2 = −

√
5C̃20). The scalar Re is

the normalization radius which usually is the maximum elongation of the body.
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The term P̃
(m)
n is the normalized Legendre function and P̃

(m)′
n its derivative.

The normalized Legendre function is defined as

P̃ (m)
n (sinϕ) =

√
(2− δm0)

(n−m)!

(n+m)!
cosm ϕ

dmP̃n(sinϕ)

d(sinϕ)m
, (2.15)

where P̃n(sinϕ) is the normalized nth degree Legendre polynomial of the first
kind in sinϕ. The term δm0 is the Kronecker delta function which is unity for
m = 0 and zero otherwise. The normalized Legendre functions are computed
recursively as

P̃ (m)
n =
Wnm

[
√
2n− 1 sinϕP̃

(m)
n−1 −

√
(n+m− 1)(n−m− 1)

2n− 3

]
P̃

(m)
n−2, m < n,√

2n+ 1

2n
cosϕP̃

(m−1)
n−1 , m = n,

0, m > n,

where Wnm =
√
(2n+ 1)/(n2 −m2). The sequence is initialized by

P̃
(0)
0 = 1, P̃

(0)
1 =

√
3 sinϕ, P̃

(1)
1 =

√
3 cosϕ. (2.16)

Similarly, the normalized Legendre derivative can also be computed as

P̃ (m)′
n =

1

cos2 ϕ

[
−n sinϕP̃ (m)

n +

√
(2n+ 1)(n+m)(n−m)

2n− 1
P̃

(m)
n−1

]
. (2.17)

Third bodies gravity: the Keplerian gravity perturbation of other bodies
such as the Sun, planets or moons is considered as the following summation

abodies =

nbodies∑
i=2

µi

(
ri − r

∥ri − r∥32
− ri
∥ri∥32

)
, (2.18)

where r and ri read as satellite and third-body positions with respect to a
frame centered at the main body.

A well-known case arises when nbodies = 2 and no other orbital perturba-
tions are considered. If the satellite mass is neglected with respect to the two
primaries masses, that is M1 ≥M2 ≫ m, the primaries motion is independent
of the satellite. This is referred as the restricted three-body problem. Under the
previous conditions, its is more convenient to express the motion with respect
to the synodic frame S. The synodic frame is defined as S : {OS , iS , jS ,kS}
with the origin OS placed at the barycenter of the primaries, iS coincident with
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the line uniting the two primaries (main bodies) towards the second primary,
kS parallel to the system angular momentum and jS completing a right-handed
frame. The synodic frame rotates with angular velocity ωωωS/I = [0, 0, ω(t)]T and

acceleration ω̇ωωS/I = [0, 0, ω̇(t)]T with respect to an inertial frame placed at the
system barycenter with kI ≡ kS . These quantities depend on the primaries
motion which is a two-body problem. For this specific case, Eq. (2.1) yields

r̈+ ω̇ωωS/I × r+ 2ωωωS/I × ṙ+ωωωS/I × (ωωωS/I × r) =

− µ1(r− r1)

∥(r− r1)∥32
− µ2(r− r2)

∥(r− r2)∥32
+ u,

(2.19)

where r = [x, y, z]T and ṙ = [ẋ, ẏ, ż]T are the satellite position and velocity
expressed in the synodic frame. The primaries positions correspond to r1 =
[x1(t), 0, 0]

T and r2 = [x2(t), 0, 0]
T respectively. Note that the system (2.19) is

time-varying as the angular velocity, acceleration and primaries positions vary
due to the elliptic motion of the primaries.

A further simplification can be made by assuming the primaries motion
is circular. This means that the distance D between them is constant which
yields the case of the circular restricted three-body problem. In that case,
ω =

√
(µ1 + µ2)/D3, thus ω̇ = 0. Moreover, x1 = −βD and x2 = (1 − β)D

being β = µ2/(µ1+µ2) the mass parameter. Expanding Eq. (2.19), one obtains
the equation of motions for the circular restricted three-body problem

ẍ =ω2x+ 2ωẏ − µ1(x+ βD)

r31
− µ2[x− (1− β)D]

r32
+ ux,

ÿ =ω2y − 2ωẋ− µ1y

r31
− µ2y

r32
+ uy,

z̈ =− µ1z

r31
− µ2z

r32
+ uz,

(2.20)

where r1 =
√
(x+ βD)2 + y2 + z2 and r2 =

√
[x− (1− β)D]2 + y2 + z2 are

the distances of the satellite with respect to each one of the primaries respec-
tively. The CRTBP is an useful model for orbital mechanics as it models with
adequate accuracy the intermediate region where none of the two bodies has
a gravity predominance over the orbiting object. The system (2.20) has five
libration points, namely the Lagrange points Li i = 1 . . . 5. Around the La-
grange points, several families of periodic orbits can be computed numerically
[Doedel07] (see also Appendix B for a specific case of them). The unstable or
stable modes of these periodic orbits can also be exploited for the design of
non-linear trajectories (invariant manifolds connection).

Atmospheric drag: if the main body has an atmosphere and the spacecraft is
placed in a low enough orbit, the residual atmosphere may have a considerable
effect opposing to the satellite velocity v. The drag can be modelled as

adrag = −
ρatm∥v − vatm∥2

2B
(v − vatm), (2.21)
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where ρatm is the atmospheric density, vatm is the atmosphere velocity and
B is the ballistic coefficient. The density is a highly uncertain parameter
as it depends on the spatial region of the atmosphere and the solar activity.
The atmosphere velocity can be assumed as the planet rotation velocity. The
ballistic coefficient depends on the satellite as

B =
m

SCD
, (2.22)

where S is the frontal area and CD is the drag coefficient. The exposed surface
to the incident stream highly depends on the vehicle orientation. The drag
coefficient can be roughly estimated. In view of the previous facts, it can be
concluded that the atmospheric drag is hard to be modelled.

Solar radiation pressure: this is typically a minor effect (in comparison to
the previous ones) but it is worth to mention as its long term impact could
cause significant orbit drifting around small bodies. Moreover, solar sailing
propulsion is based on this principle. Assuming the spacecraft can be approx-
imated to l flat plates, the exerted acceleration is as follows

aSRP =
1

m

l∑
i=1

CR,ip1AUAi cosφi

(
1AU

r⊙

)2 r− r⊙
∥r− r⊙∥2

, (2.23)

where CR,i is the reflectivity coefficient, Ai is the exposed surface and φ is the
light angle of incidence on each surface. The term r⊙ is the Sun position in
a frame centered at the main body, thus r⊙ is the distance between the Sun
and the main body (e.g. Earth, Moon or an asteroid) in astronomical units.
The variable p1AU = 4.5 µPa is the magnitude of the solar radiation pressure,
for an absorbing sheet, at a distance of 1 AU. The relative geometry between
the satellite and other main bodies could eclipse the satellite-Sun line-of-sight
which drastically reduces the SRP effect. The SRP perturbation is usually
treated with an averaged formulation.

2.1.2 Relative motion

Proximity operations typically relies on relative models where the motion of a
chaser vehicle is described with respect to a target. A relative motion model
assumes the target orbit is known. Usually, the target (also named as leader
or chief depending on the context) has a passive role while the chaser (also
named as follower or deputy) has the control capability to change its orbit.

In the majority of cases, the relative motion between the chaser and target
is studied under Keplerian assumptions. In proximity operations, the vehi-
cles are considered to be close enough so that the relative dynamics can be
linearized around the target orbit. Under the previous hypotheses, analytical
solutions, providing useful insight about the relative trajectories, can be ob-
tained. As in the absolute motion case, the relative state can be expressed
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using relative Cartesian coordinates [Tschauner65], classical relative orbital
elements [Schaub02] or relative modified equinoctial elements [Gim05].

In this dissertation, the Cartesian representation of the relative state will be
the one employed. Regarding dynamical effects, the Keplerian-based relative
model will be predominantly employed. Additionally, a third-body gravity will
be added for targets in periodic orbits of the restricted three-body problem.
The differential inhomogeneous gravity, atmospheric drag and solar radiation
pressure will not be considered in the subsequent relative motion models.

Generally, let define a frame of reference attached to the target, rt, as
L : {rt, iL, jL,kL}. Define the relative position in the L frame as ρρρ = r− rt =
[x, y, z]T . In the frame L the relative dynamics yields

ρ̈ρρ+ ω̇ωωL/I × ρρρ+ 2ωωωL/I × ρ̇ρρ+ωωωL/I × (ωωωL/I × ρρρ) =

− µ(rt + ρρρ)

∥rt + ρρρ∥32
+

µrt
∥rt∥32

+ ap − ap,t + u− ut,
(2.24)

where the subindex t refers to the target. Note that ωωωL/I and ω̇ωωL/I are char-
acterized by the target motion with respect to the inertial frame. Considering
that the target spacecraft is passive, ut = 0, and including only third bodies
gravities one obtains

ρ̈ρρ+ ω̇ωωL/I × ρρρ+ 2ωωωL/I × ρ̇ρρ+ωωωL/I × (ωωωL/I × ρρρ) =

−
nbodies∑
i=1

µi

(
rit + ρρρ

∥rit + ρρρ∥32
− rit
∥rit∥32

)
+ u,

(2.25)

where the main body gravity has been inserted within the summation for the
sake of compactness. Note that rit is the target position with respect to each
body.

Under the proximity assumption, the relative distance is negligible against
the chaser distance with respect to the main and third bodies, ∥rit∥2 ≫ ∥ρρρ∥2.
Then, each one of the gravity terms in Eq. (2.25) can be linearized around the
target position as

rit + ρρρ

∥ρρρ+ rit∥32
≈ rit

r3it
+

1

r3it

(
I− 3ritr

T
it

r2it

)
ρρρ, (2.26)

Introducing the linearized approximation of Eq. (2.26) into Eq. (2.25) yields

ρ̈ρρ+ ω̇ωωL/I × ρρρ+ 2ωωωL/I × ρ̇ρρ+ωωωL/I × (ωωωL/I × ρρρ) =

−
nbodies∑
i=1

µi

r3it

(
I− 3ritr

T
it

r2it

)
ρρρ+ u.

(2.27)

Equation (2.27) can be expressed algebraically as

d

dt

[
ρρρ
ρ̇ρρ

]
=

[
03×3 I

−Ω̇ΩΩL/I −ΩΩΩ2
L/I +Ggrav −2ΩΩΩL/I

]
︸ ︷︷ ︸

A(t)

[
ρρρ
ρ̇ρρ

]
+

[
0
I

]
︸︷︷︸
B(t)

u, (2.28)
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where ΩΩΩL/I and Ω̇ΩΩL/I express the cross product associated to ωωωL/I and ω̇ωωL/I

algebraically

ΩΩΩL/I =

 0 −ωL/I,3 ωL/I,2

ωL/I,3 0 −ωL/I,1

−ωL/I,2 ωL/I,1 0

 ,

Ω̇ΩΩL/I =

 0 −ω̇L/I,3 ω̇L/I,2

ω̇L/I,3 0 −ω̇L/I,1

−ω̇L/I,2 ω̇L/I,1 0

 .

The matrix Ggrav is the Jacobian of the gravity terms. The matrix 03×3 is full
of zeros. The relative motion model given by Eq. (2.28) is, in general, linear
time-varying (LTV). This is a consequence of the state matrix dependence
on the chaser motion. Let define the relative state as x = [ρρρT , ρ̇ρρT ]T . Then,
Eq. (2.28) can be expressed as an LTV system

ẋ(t) = A(t)x(t) +Bu(t). (2.29)

Keplerian-based linear relative motion

This model is largely employed for geocentric orbits. In this case, only a main
body, nbodies = 1, is considered (for the sake of clarity the subindex 1 is omit-
ted in the sequel), thus both the target and chaser evolve in Keplerian orbits
(as orbital perturbations are neglected). The relative position is expressed
in a local-vertical/local-horizontal (LVLH) frame attached to the target as
L : {rt, iL, jL,kL}. In the LVLH frame, kL refers to the radial position (posi-
tive towards the main body centre), jL to the cross-track position (opposite to
the target orbit angular momentum) and iL completes a right-handed system
as

iL = jL × kL, jL = − rt × ṙt
∥rt × ṙt∥2

, kL = − rt
∥rt∥2

. (2.30)

The LVLH frame can be visually observed in Fig. 2.2. Since the target evolves
in a Keplerian orbit, hence ωωωL/I = [0,−ν̇t, 0]T , ω̇ωωL/I = [0,−ν̈t, 0]T and rt =

[0, 0,−rt]T . Let recall that νt is the target’s true anomaly. For the sake of
conciseness, the subindex t will be omitted from now on. Note that only the
relative position, velocity and control correspond to the follower. Under the
previous assumptions, Eq. (2.27) can be expanded as

ẍ = ν̈z + 2ν̇ż + ν̇2x− µx

r3
+ ux,

ÿ = −µy

r3
+ uy,

z̈ = −ν̈x− 2ν̇ẋ+ ν̇2z +
2µz

r3
+ uz.

(2.31)

The previous set of equations is known as the Tschauner-Hempel relative mo-
tion model [Tschauner65]. Note that the in-plane (xz) motion is decoupled



42 2.1 Translational motion

Figure 2.2: Inertial and LVLH frame for Keplerian-based relative mo-
tion

with respect to the out-of-plane (y) motion. It can be easily deduced that the
solution to the out-of-plane motion is an harmonic function.

Yamanaka-Ankersen state transition matrix

The change of the independent variable from time, t, to the target true
anomaly, ν, allows to obtain a more simple expression of the relative motion.
The time derivatives are substituted as

d(·)
dt

=
d(·)
dν

dν

dt
,

d2(·)
dt2

=
d2(·)
dν2

(
dν

dt

)2

+
d(·)
dν

d2ν

dt2
, (2.32)

and the following change of variable is used

x̃(ν) = U(ν)x(t) =

[
(1 + e cos ν)I 0

−e sin νI 1 + e cos ν

ν̇
I

]
x(t). (2.33)

Applying the change of variable of Eq. (2.32)-(2.33) to the Tschauner-Hempel
model, Eq. (2.31) leads to the following system

x̃′(ν) = Ã(ν)x̃(ν) +Bũ(ν), (2.34)

where the state matrix is now

Ã(ν) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0

0 0
3

1 + e cos ν
−2 0 0


. (2.35)
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An analytical state transition matrix, ΦΦΦ, for the system given in Eq. (2.34), was
deduced in [Yamanaka02]. This matrix is named as the Yamanaka-Ankersen
state transition matrix. The transition from ν0 to ν is defined in terms of the
fundamental matrix ΦΦΦν as

ΦΦΦ(ν, ν0) = ΦΦΦνΦΦΦ
−1
ν0 , (2.36)

ΦΦΦν =



1 0 −cν(1 + ρν) sν(1 + ρν) 0 3ρ2νJ
0 cν 0 0 sν 0
0 0 sνρν cνρν 0 2− 3esνρνJ
0 0 2sνρν 2cνρν − e 0 3(1− 2esνρνJ)
0 −sν 0 0 cν 0

0 0 cν + ec2ν −sν − es2ν 0 −3e
[
(cν + ec2ν)J +

sν
ρν

]


,

where cν = cos ν, sν = sin ν, c2ν = cos 2ν, s2ν = sin 2ν, ρν = 1 + e cos ν and

J =

∫ ν

ν0

1

(1 + e cos τ)2
dτ =

√
µ

[a(1− e2)]3
(t− t0), (2.37)

is the drift term. Note that det(ΦΦΦν) = e2 − 1, thus the inverse of the funda-
mental matrix is always defined for elliptical orbits (0 ≤ e < 1). Using the
Yamanaka-Ankersen transition matrix, the relative state can be propagated as

x̃(ν) = Φ(ν, ν0)x̃(ν0) +

∫ ν

ν0

ΦΦΦ(ν, τ)Bũ(τ)dτ, ν ≥ ν0. (2.38)

Vector of relative parameters

In the spirit of the classical orbital elements, which are invariants of the
absolute motion under a Keplerian model, the vector of relative parameters was
conceived in [Deaconu13] to describe relative periodic orbits. By substituting
the relative cartesian coordinates, the vector of relative parameters provides
an alternate state description. This description is very convenient for flight
formation purposes as it provides insight on the relative orbits center and size.

The transformation from Cartesian coordinates to the vector of relative
parameters is subsequently derived. In [Deaconu13], it was noticed that the
term ΦΦΦ−1

ν0 x̃(ν0) arising in Eq. (2.38) is constant for a given initial time ν0.
Expanding Eq. (2.38) for the natural motion (u(t) = 0) and factoring out the
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constant terms relative to ΦΦΦ−1
ν0 x̃(ν0) gives

x̃ = 3ρ2νJd0 + sν(1 + ρν)d1 − cν(1 + ρν)d2 + d3,

ỹ = cνd4 + sνd5,

z̃ = (2− 3esνρνJ)d0 + cνρνd1 + sνρνd2,

ṽx = 3(1− 2esνρνJ)d0 + (2cνρν − e)d1 + 2sνρνd2,

ṽy = −sνd4 + cνd5,

ṽz = −3e
[
(cν + ec2ν)J +

sν
ρν

]
d0 − (sν + es2ν)d1 + (cν + ec2ν)d2,

(2.39)

where the terms di are the components of ΦΦΦ−1
ν0 x̃(ν0). Note that they are in a

different order since {d0, d1, d2, d3} have been associated to the xz coordinates
while {d4, d5} correspond to the y coordinate. Let define d as the vector of
relative parameters, at time ν,

d(ν) = [d0(ν), d1(ν), d2(ν), d3(ν), d4(ν), d5(ν)]
T , (2.40)

then the following relation between the relative state x̃ and the vector of relative
parameters d holds

x̃(ν) =



0 sν(1 + ρν) −cν(1 + ρν) 1 0 0
0 0 0 0 cν sν
2 cνρν sνρν 0 0 0
3 2cνρν − e 2sνρν 0 0 0
0 0 0 0 −sν cν

−3esν
ρν

−(sν + es2ν) cν + ec2ν 0 0 0


︸ ︷︷ ︸

W(ν)

d(ν). (2.41)

The transformation matrixW is composed of the fundamental matrix ΦΦΦν terms
with the columns sorted as {1 → 4, 2 → 5, 4 → 2, 5 → 6, 6 → 1}. This rear-
rangement is required because the in-plane terms {x, z, ẋ, ż} have been associ-
ated to {d0, d1, d2, d3} while the out-of-plane coordinates {y, ẏ} are associated
to {d4, d5}. Note that in the previous case the drift term is null, J = 0, because
no drift arises during a single instant. Additionally the transformation matrix
determinant is det(W) = 1−e2, thus being its inverse defined for closed orbits
(0 ≤ e < 1). Consequently, the inverse transformation exists as

d(ν) = W−1(ν)x̃(ν) = C(ν)x̃(ν), (2.42)

which represents a similarity transformation and d is a proper state vector with
its own dynamics. Differentiating Eq. (2.42) with respect to the independent
variable ν yields

d′(ν) = C′(ν)x̃(ν) +C(ν)x̃′(ν). (2.43)
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Then, introducing Eq. (2.34) and Eq. (2.41), into Eq. (2.43) provides the vector
of relative parameters dynamics as

d′(ν) = [C′(ν) +C(ν)Ã(ν)]W(ν)d(ν) +C(ν)Bũ(ν)

= AD(ν)d(ν) +BD(ν)ũ(ν).
(2.44)

The vector of relative parameters state matrix AD and control matrix BD can
be expanded as

AD(ν) =



0 0 0 0 0 0
0 0 0 0 0 0

−3e

ρ2ν
0 0 0 0 0

3

ρ2ν
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


, (2.45)

BD(ν) =
1

1− e2



−ρ2ν 0 esνρν
2cν + ec2ν 0 −sνρν
sν(2 + ecν) 0 cν + ec2ν − 2e
−esν(2 + ecν) 0 −(e2c2ν + ecν − 2)

0 −(1− e2)sν 0
0 (1− e2)cν 0

 . (2.46)

By examining the state matrix AD, it can be deduced that d0 = 0 corresponds
to a relative periodic orbit. The relative orbit periodicity has a 1:1 relation
with the target orbital period. It is concluded that nullifying the term d0
is the necessary and sufficient condition to obtain a relative periodic motion.
This could have been also deduced by noting that in the explicit solution of
Eq. (2.39) the only term associated with the drift J is d0. For a periodic
relative orbit, the parameters d1 and d2 master the relative orbit amplitudes in
the orbital plane. The parameter d3 is the center of the orbit which can only be
varied along the in-track direction. Note that it is not possible to have the orbit
center along the radial direction as this causes a drift due to the orbital periods
difference. Similarly, the terms d4 and d5 master the out-of-plane coordinate
amplitudes.

It should be noticed that the control action depends on the application
time due to the control matrix BD time dependency (see Eq. (2.46)).

The state transition matrix, for the vector of relative parameters, can
be derived by inserting the similarity transformation of Eq. (2.41) into the
Yamanaka-Ankersen transition matrix of Eq. (2.38)

d(ν) = W−1(ν)ΦΦΦ(ν, ν0)W(ν0)d(ν0) = ΦΦΦD(ν, ν0)d(ν0), (2.47)
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then ΦΦΦD states as

ΦΦΦD(ν, ν0) =



1 0 0 0 0 0
0 1 0 0 0 0
−3eJ 0 1 0 0 0
3J 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (2.48)

The state propagation (see Eq. (2.38)) is projected in the vector of relative
parameters space as

d(ν) = ΦD(ν, ν0)d(ν0) +

∫ ν

ν0

ΦΦΦD(ν, τ)BD(ν)ũ(τ)dτ, ν ≥ ν0. (2.49)

Restricted three-body problem linear relative motion

Proximity operations around periodic orbits in the restricted three-body prob-
lem will be a reality in the near future. Consequently, there is a need to develop
relative motion models under that scenario. Let start by projecting the lin-
earized Eq. (2.27) of relative motion in the synodic frame S with two main
bodies (nbodies = 2)

ρ̈ρρ =− ω̇ωωS/I × ρρρ− 2ωωωS/I × ρ̇ρρ−ωωωS/I × (ωωωS/I × ρρρ)

−
2∑

i=1

µi

(
rit + ρρρ

∥rit + ρρρ∥32
− rit
∥rit∥32

)
+ u,

(2.50)

which can be decomposed as

ẍ = ω2x+ ω̇y + 2ωẏ −
2∑

i=1

µi

r3it

[(
1− 3x2it

r2it

)
x− 3

xityit
r2it

y − 3
xitzit
r2it

z

]
+ ux,

ÿ = ω2y − ω̇x− 2ωẋ−
2∑

i=1

µi

r3it

[(
1− 3y2it

r2it

)
y − 3

xityit
r2it

x− 3
yitzit
r2it

y

]
+ uy,

z̈ = −
2∑

i=1

µi

r3it

[(
1− 3z2it

r2it

)
z − 3

xitzit
r2it

x− 3
yitzit
r2it

y

]
+ uz.

Unlike the Keplerian-based linear relative model, the motion in the plane
of the primaries xy is mutually coupled with the out-of-plane motion z. An
additional difficulty is that the restricted-three body problem periodic orbits
are parameterized numerically. Assuming the target is placed in that orbit its
position can not described analytically but rt(t) = rt(t+ kT ) for k ∈ N, where
T is the orbital period, can be assured. Due to these facts, the system given
by Eq. (2.50) is LTV with a periodicity of T . In any case, the state transition
matrix has to be computed numerically by integrating the following system

Φ̇ΦΦ(t, t0) = A(t)ΦΦΦ(t, t0), t ≥ t0, (2.51)
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Figure 2.3: Inertial, synodic and LVLH frames for RTBP relative
motion

which is composed of 36 linear ordinary differential equations. Due to the
periodicity of the target orbit, the coefficient matrix is also periodic A(t) =
A(t + kT ) as well as the state transition matrix ΦΦΦ(t) = ΦΦΦ(t + kT ). This fact
suggests the possibility of pre-computing and storing the restricted-three body
problem state transition matrices in order to diminish the computational load.

Local-vertical/local-horizontal frame

The use of a local frame attached to the target orbit provides a very
intuitive idea of the relative position configuration. In order to mimic the
Keplerian-based relative motion LVLH frame (see Fig. 2.2) [Franzini17] pro-
posed its counterpart for relative motion in the RTBP. Moreover, it eases any
kind of constraints referred to the target. To this end, the RTBP local-vertical
local-horizontal frame is defined as L : {rt, iL, jL,kL} (see Fig. 2.3) where the
origin is attached to the position of the target center of mass rt, kL points
towards the second primary, jL is parallel to the target kinetic momentum (as
view from the S frame with respect to the second primary) and iL closes the
right-handed system such that

iL = jL × kL, jL = − r2t × ṙ2t
∥r2t × ṙ2t∥2

, kL = − r2t
∥r2t∥2

. (2.52)

Let recall that the previous frame assumed the second primary is the Moon,
thus being specially convenient for systems with a mass parameter of β ≈ 0. In
that situation, the L1 and L2 libration points are close to the secondary, thus
their associated families of periodic orbits are in the vicinity of the secondary.
Projecting, the relative dynamics of Eq. (2.27) under RTBP assumptions, in
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the LVLH frame states

ρ̈̈ρ̈ρ =−
[
Ω̇̇Ω̇ΩL/I +ΩΩΩ2

L/I +
µ1

r31t

(
I− 3

r1tr
T
1t

r21t

)
+
µ2

r32t

(
I− 3

r2tr
T
2t

r22t

)]
ρρρ

− 2ΩΩΩL/I ρ̇̇ρ̇ρ+ u,

(2.53)

which can be recast in the same compact form as Eq. (2.28)

d

dt

[
ρρρ
ρ̇ρρ

]
=

[
03×3 I

−Ω̇ΩΩL/I −ΩΩΩ2
L/I +Ggrav −2ΩΩΩL/I

] [
ρρρ
ρ̇ρρ

]
+

[
0
I

]
u, (2.54)

with the gravity Jacobian matrix as

Ggrav = −µ1

r31t

(
I− 3

r1tr
T
1t

r21t

)
− µ2

r32t

(
I− 3

r2tr
T
2t

r22t

)
. (2.55)

The rotation of the LVLH frame with respect to the inertial frame can be
decomposed as

ωωωL/I = ωωωL/S +ωωωS/I , (2.56)

ω̇̇ω̇ωL/I

∣∣
L
= ω̇̇ω̇ωL/S

∣∣
L
+ ω̇̇ω̇ωS/I

∣∣
S
−ωωωL/S ×ωωωS/I , (2.57)

where it should be noted that, when expressed in the synodic frame, ωωωS/I and
ω̇ωωS/I only depend on the primaries motion which is a two-body problem (as
mentioned in the third bodies gravity paragraph of Section 2.1.1). The terms
ωωωL/S and ω̇ωωL/S depend on the target RTBP periodic orbit such that

ωωωL/S =−
(
ṙT2tiL
r2t

)
jL +

(
r2t
h2t

r̈T2tjL

)
kL,

ω̇ωωL/S

∣∣
L
=−

(
r̈T2tiL + 2ṙ2tωωω

T
L/SjL

r2t

)
jL

+

[(
ṙ2t
h2t

r̈T2t +
r2t
h2t

...
r T

2t

)
jL − 2

r22t
h22t

(r̈T2tiL)(r̈
T
2tjL)

]
kL,

where h2t = ∥r2t × ṙ2t∥2 is the module of the target orbit angular momentum
(with respect to the secondary) in the synodic frame. Note that the angular
velocity and acceleration of the LVLH frame with respect to the synodic frame
exclusively depends on the target relative motion around the secondary, r2t =
rt−r2. Let recall that, when expressed in the synodic frame, r2 = [r2(t), 0, 0]

T is
time-varying if the primaries motion is eccentric (r2 ≡ constant if their motion
is circular). The details of the relative equations of motion in the LVLH frame
can be found in [Franzini17].
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2.1.3 Thrust models

The orbit control model will depend on the employed thrusters. For instance,
proximity operations largely rely on chemical or cold gas thrusters which can be
modelled impulsively (jumps in the velocity). In a more sophisticated manner,
pulse amplitude or width modulation models could be employed. Furthermore,
the emergence of electric thrusters, able of providing low thrust during long
periods of time, implies the necessity of continuous thrust models.

Impulsive model

The velocity jump provided by a chemical or cold gas array of thrusters, acted
at time tk, can be quantified as

∆V(t) = lim
∆tk→0

∫ tk+∆tk

tk

u(τ)dτδ(t− tk) = ∆Vkδ(t− tk), (2.58)

where δ is the Kronecker delta function. It is assumed that the thrusters
opening times, ∆tk, can be adjusted to produce the required impulse amplitude.
In that line, the impulsive model changes the relative velocity instantaneously
as

ρ̇ρρ+(t) = ρ̇ρρ(t) + ∆V(t), (2.59)

where the superscript + denotes the velocity after the impulse is applied.
For Keplerian-based relative motion, the vector of parameters is affected

by an impulse in a very particular way such that

d+(ν) = d(ν) +BD(ν)∆V(ν), (2.60)

where the impulse effect, on the state, depends on the application instant as

BD(ν) = W−1(ν)U(ν)B =

√
p3

µ

1

(e2 − 1)ρν



ρ2ν 0 −esνρν
−2cν − e(1 + c2ν) 0 sνρν
−sν(2 + ecν) 0 2e− cνρν
esν(2 + ecν) 0 ecνρν − 2

0 −(e2 − 1)sν 0
0 (e2 − 1)cν 0


. (2.61)

Let recall that p is the semi-latus rectum. The impulsive effect on orbital
and modified equinoctial elements is not stated as it is not used through this
dissertation.

Acceleration models

Three acceleration based control models are presented. The pulse amplitude
modulation and continuous models are appropriate for electric thrusters. The
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pulse width modulation model expands the impulsive model providing a more
realistic way of operating chemical or cold gas thrusters. Finally, a disturbance
model is presented for both the applied impulse or acceleration.

Pulse amplitude modulation (PAM)

This model assumes a time discretization where the exerted acceleration is
constant along each discretized interval. Assume N intervals over the control
horizon, each one spanning from the instant tk−1 to the instant tk, then

u(t) := {uk, t ∈ [tk−1, tk), k = 1 . . . N}. (2.62)

It is assumed that instantaneous changes in the accelerations between intervals
occur. A more realistic model could consider the thrusters rise time as

u(t) := {uk + e−τ(t−tk−1)(uk−1 − uk), t ∈ [tk−1, tk), k = 1 . . . N}, (2.63)

where the time constant τ determines how fast the thruster can change its
exerted acceleration.

Pulse width modulation (PWM)

This model directly controls the thrusters valves opening and closing times.
The thrusters operate in an ON/OFF regime with the same level of thrust. This
way, the control variables are the thruster opening time, τ , and its duration κ.
Assuming an array of nT thrusters

u(t) =

nT∑
p=1

up(t)wp, up(t) =


0, t < τp,

up, t ∈ [τp, τp + κp],

0, t > τp + κp,

(2.64)

where the subindex p refers to each thruster of the array, ūp the control accel-
eration level and wp refers to each thruster control direction.

B-splines parameterization

Both the PAM and PWM models assume instantaneous jumps of the con-
trol signal when a control switch activates. However, the particular case of
electric thrusters may require a continuous control acceleration profile. To
this end, the control signal can be parameterized in terms of B-splines (see
Appendix A for the details), to achieve continuity up to Cq

u(t) =

nc∑
j=1

Bj,q(t)ξξξj , (2.65)

where Bj,q are qth order B-splines, built on a predefined knots sequence tknots,
while ξξξj are the control points.
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Disturbances

Typically, the applied control, ∆V∗ or u∗, will differ from the computed one.
Assuming the application times are perfectly controlled, the discrepancy is
caused by the thrusters imperfect alignment and mismatches on the thrust
level. Generally, additive and multiplicative noises may be considered as

∆V∗ = ∆R(δθδθδθ)[∆V(1 + ϵ∆V ) + δδδV], (2.66)

u∗ = ∆R(δθδθδθ)[u(1 + ϵu) + δδδu], (2.67)

where ∆R is the misalignment rotation matrix whose input are the small an-
gles δθδθδθ. Regarding thrust level mismatch, ϵ∆V and ϵu are multiplicative distur-
bances affecting the computed thrust level proportionally. The multiplicative
disturbance could model, in a simplified way, thrust level losses due to the tran-
sient responses to thrust changes. On the other hand, δδδV and δδδu are additive
disturbances independent of the commanded thrust level. The additive distur-
bance could account for inherent fabrication defects affecting all the thrusters
in the same way.

In this dissertation, the disturbances are assumed to be Gaussian as

δθδθδθ ∼ N3(δ̂θδθδθ,ΣΣΣδθδθδθ), (2.68)

ϵ∆V ∼ N(ϵ̂∆V , σ
2
ϵ∆V

), δδδV ∼ N3(δ̂δδV,ΣΣΣδδδV), (2.69)

ϵu ∼ N(ϵ̂u, σ
2
ϵu), δδδu ∼ N3(δ̂δδu,ΣΣΣδδδu), (2.70)

where Nn is a multivariate Gaussian distribution of dimension n. The hat
symbol denotes the random variable bias, σ the standard deviation and ΣΣΣ the
covariance matrix.

2.2 Angular motion

The angular motion describes the spacecraft orientation (namely the attitude)
evolution. In this dissertation, the Euler angles, quaternions and modified
Rodrigues parameters representations will be presented. Then, the body frame
is employed to express the attitude dynamics. A coupling with the translational
motion arises if the gravity-gradient torque is considered. In this work, the
considered mean of attitude control is reaction wheels for which two simplified
models will be presented.

2.2.1 Attitude representation

This section presents several attitude representation options such as Euler an-
gles, quaternions and modified Rodrigues parameters.
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Euler angles

The Euler angles are three angles describing the orientation of a rigid body with
respect to a coordinate system. Each angle defines an elemental rotation with
respect to an axis. As a matter of fact, there exist twelve possible sequences
of rotations:

• Proper Euler angles: {zxz}, {xyx}, {yzy}, {zyz}, {xzx}, {yxy}.

• Tait-Bryan angles: {xyz}, {yzx}, {zxy}, {xzy}}, {zyx}, {yxz}.

A widely employed sequence in aerospace engineering is the {zxy} which is
properly defined as

I
θ3−→
zI

S
θ2−→
yS

S′ θ1−−→
xS′

B, (2.71)

where θ3 ≡ yaw, θ2 ≡ pitch and θ1 ≡ roll.

Figure 2.4: Euler angles for {zxy} sequence.

The associated rotation matrix can be expressed as the composition of these
elemental rotations. For the {zxy} sequence

R(θ1, θ2, θ3) = Rx(θ1)Ry(θ2)Rz(θ3)

=

 cθ2cθ3 cθ2sθ3 −sθ2
−cθ1sθ3 + sθ1sθ2cθ3 cθ1cθ3 + sθ1sθ2sθ3 sθ1cθ2
sθ1sθ3 + cθ1sθ2cθ3 −sθ1cθ3 + cθ1sθ2sθ3 cθ1cθ2

 ,
(2.72)

where c(·) = cos(·) and s(·) = sin(·). Note that, according to Eq. (2.72),
{θ1 + π, π − θ2, θ3 + π} represents the same orientation as {θ1, θ2, θ3}. To
avoid this ambiguity, the pitch angle is usually restricted as θ2 ∈ [−π/2, π/2].
The Euler angles kinematics is derived taking into account that the angular
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velocity between frames is the composition of each elemental rotation angular
velocity

ωωωB
B/I = ωωωB

B/S′ +ωωωB
S′/S +ωωωB

S/I , (2.73)

where taking into account that

ωωωB
B/S′ = [θ̇1, 0, 0]

T , ωωωS′

S′/S = [0, θ̇2, 0]
T , ωωωS

S/I′ = [0, 0, θ̇3]
T , (2.74)

Eq. (2.73) can be rewritten as

ωωωB
B/I = ωωωB

B/S′ +RB
S′ωωωS′

S′/S +RB
Sωωω

S
S/I , (2.75)

thus, developing this equation and clearing the Euler angles derivatives, one
obtains the kinematics expression

d

dt

θ1θ2
θ3

 =
1

cθ2

cθ2 sθ1sθ2 cθ1sθ2
0 cθ1cθ2 −sθ1cθ2
0 sθ1 cθ1

ω1

ω2

ω3

 , (2.76)

where ωωωB
B/I = [ω1, ω2, ω3]

T . The kinematics can be expressed compactly as

θ̇θθB/I = C(θθθB/I)ωωω
B
B/I , (2.77)

where θθθB/I = [θ1, θ2, θ3]
T are the Euler angles representing the body orientation

with respect to the inertial frame. Sometimes it could be advantageous to
express the body orientation with respect to a non-inertial frame L. In such
case, the kinematics can be modified as

θ̇θθB/L = C(θθθB/L)[ωωω
B
B/I −R(θθθB/L)ωωω

L
L/I ], (2.78)

where the non-inertial frame angular velocity with respect to the inertial frame
has to be known. Note that R(θθθB/L) = RB

L is the rotation matrix from the L
frame to the B frame.

The Euler angles kinematics (see Eq. (2.76)) suffers singularities for θ2 =
±π/2. This highlights the major drawback of this representation even though
it is very intuitive from a geometrical perspective as it can be seen in Fig. 2.4.

Quaternions

Quaternions are an extension to complex numbers as q = q0 + q1i+ q2j + q3k.
Using a vector notation, q = [q0, q1, q2, q3]

T . The quaternions addition follows a
sum component by component. The quaternion product, denoted as q′′ = q′⋆q,
can be expressed algebraically as

q′′0
q′′1
q′′2
q′′3

 =


q′0 −q′1 −q′2 −q′3
q′1 q′0 −q′3 q′2
q′2 q′3 q′0 −q′1
q′3 −q′2 q′1 q′0



q0
q1
q2
q3

 . (2.79)
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A unit norm quaternion (∥q∥2 = 1) is able to express the orientation be-
tween two frames. An attitude quaternion is directly related to the rotation
axis, erot, and angle, θrot, as

q =

 cos
θrot
2

erot sin
θrot
2

 . (2.80)

The rotation matrix associated to quaternions is given by

R(q) =

q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 . (2.81)

Note that R(q) = R(−q), thus q and −q represent the same attitude. The
attitude composition rule for quaternions is straightforward as it is given by
means of the quaternion product

I −→ S −→ S′ −→ B, qB/I = (qS/I ⋆ qS′/S) ⋆ qB/S′ . (2.82)

The attitude kinematics for quaternions is given as

d

dt


q0
q1
q2
q3

 =
1

2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


ω1

ω2

ω3

 , (2.83)

which can be algebraically presented as

q̇B/I = C(qB/I)ωωω
B
B/I . (2.84)

Again, if the attitude quaternion express the orientation of the body frame
with respect to a non-inertial frame L, the kinematics can be modified as

q̇B/L = C(qB/L)[ωωω
B
B/I −R(qB/L)ωωω

L
L/I ]. (2.85)

The quaternion kinematics (see Eq. (2.83)) is a bilinear differential system
without singularities. However, the quaternion representation has a tight nu-
merical constraint as the unit-norm shall be guaranteed in order to properly
define an orientation. This is a drawback when considering quaternions in
optimization problems.

Modified Rodrigues parameters

Modified Rodrigues parameters (MRP), σσσ, are an alternate attitude represen-
tation related to the rotation axis and angle as

σσσ = erot tan(θrot/4). (2.86)
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MRP singularities arise for θrot = ±2kπ, k ∈ N. However, the rotation angle
can be constrained as θrot ∈ [−π, π] since {erot, θrot} ≡ {−erot, 2π − θrot}
represent the same orientation. The rotation matrix can be expressed in terms
of MRP as

R(σσσ) = I+
8σσσ×σσσ× − 4(1− ||σσσ||22)σσσ×

(1 + ||σσσ||22)2
, (2.87)

where σσσ× ∈ R3×3 denote the cross product matrix associated to σσσ. If the
attitude composition between the following frames I −→ S −→ B has to be
made, the MRP composition rule is as follows

σσσB/I =
(1− ||σσσB/S ||22)σσσS/I + (1− ||σσσS/I ||22)σσσB/S + 2σσσS/I × σσσB/S

1 + (||σσσS/I ||2||σσσB/S ||2)2 − 2σσσT
S/IσσσB/S

. (2.88)

The attitude kinematics equation for MRP isσ̇1σ̇2
σ̇3

 =
1

4

1 + σ2
1 − σ2

2 − σ2
3 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ1σ2 + σ3) 1− σ2
1 + σ2

2 − σ2
3 2(σ2σ3 − σ1)

2(σ1σ3 − σ2) 2(σ2σ3 + σ1) 1− σ2
1 − σ2

2 + σ2
3


︸ ︷︷ ︸

C(σσσ)

ω1

ω2

ω3

 ,

which can be expressed as

σ̇σσB/I = C(σσσB/I)ωωω
B
B/I . (2.89)

In the case that the attitude is represented with respect to a non-inertial frame
L, the kinematics modifies as

σ̇σσB/L = C(σσσB/L)[ωωω
B
B/I −R(σσσB/L)ωωω

L
L/I ]. (2.90)

The MRP kinematics Eq. (2.2.1) does not present singularities. Moreover,
as they are a minimal representation (three parameters), no constraints are
necessary. This fact makes MRP very convenient for optimization problems.
References [Marandi87, Schaub96] provide a thorough description of MRP and
its use for spacecraft attitude dynamics.

2.2.2 Rotational dynamics

The rotational dynamics is usually expressed in spacecraft body frame B :
{r, iB, jB,kB} as the spacecraft inertia matrix J ∈ R3×3 is constant in that
frame. Therefore, this section assumes every term is projected in the body
frame. Assuming a rigid body, its rotational dynamics is given by

Jω̇ωωB/I +ωωωB/I × (JωωωB/I) = Tp +Tu, (2.91)

whereTp is the natural perturbing external torque andTu is the control torque.
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The perturbing torque arises due to the orbital forces (gravity, drag and
solar radiation pressure) spatial differences in the vehicle. However, the most
significant and persistent torque perturbation is the gravity-gradient one. Due
to this fact, this dissertation only considers the gravity-gradient torque, thus
neglecting drag or SRP torques, for the specific scenario of asteroid explo-
ration. Additionally, parasitic torques coming from thrusters actuation are
also neglected as it is assumed they are perfectly aligned with the center of
gravity.

The control torque will be provided internally by means of reaction wheels.
These devices are able to change their angular momentum (by speeding or
slowing down their rotation), thus provoking an opposite angular reaction of the
satellite. Subsequently, two simplified models for reaction wheels are presented.

Gravity-gradient torque

The gravity-gradient torque arises due to the spacecraft non-homogeneous mass
distribution. This effect is properly accounted for by adding the individual
torque contribution of each infinitesimal mass

Tgrav =

∫
m
∆r×

[
−µ(r+∆r)

∥r+∆r∥32
+ agrav(r+∆r)

]
dm, (2.92)

where ∆r is the distance of each differential mass with respect to the spacecraft
center of gravity r. However, the direct integration of Eq. (2.92) could not be
possible as the mass distribution function m ≡ m(∆r) may not be available.
Alternatively, if a simplified discrete mass distribution of the spacecraft is
available, the integral computation boils down to a simple summation as

Tgrav ≈
n∑

j=1

mj∆rj ×
[
−µ(r+∆rj)

∥r+∆rj∥32
+ agrav(r+∆rj)

]
, (2.93)

where the spacecraft distribution is now considered by means of discrete masses
mj in positions ∆rj with respect to the center of gravity. Note that the gravity-
gradient torque depends on the translational motion due to center of gravity
position r.

Reaction wheels

If a three-axis reaction wheels array is considered to exert torque on the space-
craft, then

Tu = −Ḣrw −ωωωB/I ×Hrw, (2.94)

where Hrw and Ḣrw are the reaction wheels angular momentum and its vari-
ation. The reaction wheels angular momentum variation is a caused by the
applied torque on the wheels array, Tu,rw, as

Ḣrw + Jrwω̇ωωB/I = Tu,rw, (2.95)
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where Jrw is the reaction wheels array inertia matrix. It should be noted
that this detailed model boils down to the consideration of the reaction wheels
applied torque Tu,rw. As such consideration complicates the attitude control
process since the reaction wheels angular momentum is added as an attitude
state, two simplified reaction wheels models will be presented.

External torque free model

Assuming no external torque is applied (Tp = 0), which accurately ap-
proximates the case of a mass homogeneous satellite, the body total angular
momentum is conserved over time as

Htot = JωωωB/I(t) +Hrw(t) ≡ constant. (2.96)

Introducing Eq. (2.94) and (2.96) into Eq. (2.91) yields

Jω̇ωωB/I(t) + Ḣrw(t) +ωωωB/I(t)×Htot = 0, (2.97)

where the control variable is directly the reactions wheels angular momentum
variation, Ḣrw. This is a convenient simplified description as reaction wheels
are limited by two factors. Firstly, the reaction wheel saturates at a maximum
angular velocity. This causes Hrw,i = Hrw,i ≡ constant −→ Ḣrw,i = 0 and
the wheel has to desaturate in order to acquire control capability in that axis
again. The control variable itself, angular momentum variation, is also limited
by the reaction wheels own dynamics as well.

Pulse amplitude modulation

The previous model assumes that no external torque is exerted on the
spacecraft, thus the total angular momentum remains constant. This may
not be valid for long-term scenario where the external torque effect (gravity-
gradient), though weak, accumulates over time. In such case, it would be valid
to use a simplified PAM based model assuming the reaction wheels can provide
a constant torque over an interval spanning from tk−1 to tk

Tu(t) := {Tuk
, t ∈ [tk−1, tk), k = 1 . . . N}. (2.98)

This could be effectively achieved by further controlling, through Eq. (2.95),
the reaction wheels angular momentum and its variation to continuosly make
the torque constant as per Eq. (2.94). It should be noted that the torque PAM
model does not explicitly take into account the reaction wheels saturation as
only the torque amplitude can be limited.
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Chapter 3

A six-degrees of freedom
model predictive controller
for spacecraft rendezvous

Quaternions came from Hamilton
after his really good work had
been done, and though
beautifully ingenious, have been
an unmixed evil to those who
have touched them in any way.

Lord Kelvin
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This chapter presents a closed-loop model predictive control algorithm for
six-degrees of freedom spacecraft rendezvous. This refers to change the chaser
orientation in order to align its thrusters with the required orbit control direc-
tions and possibly finish rendezvous with some required attitude. The previous
procedure guarantees rendezvous capabilities for spacecraft with only a few
number of available control thrusters. For the previous situation, the target is
assumed to be placed in a Keplerian orbit and has a passive role. The chaser
is in close proximity so that the relative distance is negligible with respect to
the orbit semi-major axis ∥ρρρ∥2/a ≪ 1. The chaser is equipped with an arbi-
trary number of impulsive thrusters (e.g. chemical or cold gas) and a reaction
wheels array. The thrusters control direction is always assumed to be aligned
with the center of mass, hence no parasitic torques are induced when they are
actuated. The main results of this problem has been presented in the journal
article [Sanchez20b] and the conference proceeding [Sanchez18].

Under the previous considerations, the Keplerian-based linear relative dy-
namics as per Eq. (2.31) can be employed. The relative state is instantaneously
changed according to Eq. (2.58) model. Considering a number of nT thrusters
providing orbit control along their respective wp (p = 1 . . . nT ) directions yields
the following total impulse in the local-vertical local-horizontal frame

∆V =

nT∑
p=1

(RB
L )

TwB
p ∆Vp, ∆Vp ≥ 0, (3.1)

where ∆Vp is the p thruster impulse amplitude and RB
L is the rotation ma-

trix from LVLH to body frame. Then, the control directions can be changed
through the rotation matrix which explicitly depends on the spacecraft ori-
entation. In this chapter, it is considered that the spacecraft can be rotated
with an array of reaction wheels according to the external torque free model
of Eq. (2.97). The gravity-gradient torque perturbation is neglected since the
close proximity rendezvous maneuver is usually completed in less than one
orbital period.

The whole problem can be decomposed into two stages: 1) a spacecraft
rendezvous controller computing the required total impulse; 2) an attitude
controller to meet the required thrusters orientation at specified times. Using
the previous decomposition [Wu09, Siva13, Moon16] developed a two-stages
approach where the rendezvous plan is firstly computed (with LQR or convex
optimization) and a subsequent feedback-based attitude controller tracks the
demanded orientations. The previous research works assume the attitude con-
trol will always be able to rotate the spacecraft in order to meet the commanded
orientations. However, it is not guaranteed that the reorientation maneuvers
are doable due to the possibility of control saturation.

In order to overcome the previous drawback, an integrated six-degrees of
freedom controller is proposed. This way, the required impulses directions are
consistent with the attitude control maneuvering capabilities (e.g. dividing



3.1 Rendezvous planning problem 61

a large reorientation into a concatenation of small ones). To do so, the first
step consists in stating the integrated 6-DOF rendezvous problem in a con-
tinuous optimization form. Then, the translational and angular dynamics are
transcribed by exploiting the Yamanaka-Ankersen transition matrix and the
attitude flatness property respectively. This transforms the orbit-attitude dif-
ferential dynamics into algebraic expressions. Subsequently, by parameterizing
the attitude with B-splines and discretizing the problem in the time domain,
the initial problem is reduced to a finite tractable static non-linear program.
Finally, the problem is linearized around the previous non-linear program solu-
tion so that a quadratic program, in terms of small increments of the decision
variables, is obtained. The previous QP problem closes the loop.

The outcome is a computationally affordable (QP) closed-loop MPC con-
troller able to cope with disturbances and unmodelled dynamics (to a certain
extent). The initial open-loop solution has a high computational burden be-
cause it involves finding a solution of a NLP optimization problem. However,
this initial step could be computed and uplinked by ground control. The al-
gorithm is tested numerically, under the presence of impulses mishaps, for a
heavy cargo and a lightweight spacecraft respectively.

3.1 Rendezvous planning problem

Generally, under linear Keplerian assumptions and neglecting the external
torque, the 6-DOF rendezvous problem states as

minimize
∆Vp(tj), Ḣrw(t)

J(∆Vp(tj), Ḣrw(t)),

subject to ρ̈ρρ(t) = −2ωωωL/I × ρ̇ρρ− ω̇ωωL/I × ρρρ−ωωωL/I × (ωωωL/I × ρρρ)

−
(
µ/r3t

) [
I− 3

(
rTt rt/r

2
t

)]
ρρρ,

ρ̇ρρ+(tj) = ρ̇ρρ(tj) +
N∑
j=0

nT∑
p=1

RT (σσσ(tj))wp∆Vp(tj),

ω̇ωω(t) = −J−1
[
Ḣrw(t) +ωωω(t)×Htot

]
,

σ̇σσ(t) = C(σσσ(t))[ωωω(t)−R(σσσ(t))ωωωL/I(t)],

0 ≤ ∆Vp(tj) ≤ ∆V p,

−Hrw ≤ Hrw(t) ≤ Hrw,

− Ḣrw ≤ Ḣrw(t) ≤ Ḣrw,

ρρρ(t) ∈ XLOS,

ρρρ(t0) = ρρρ0, ρ̇ρρ(t0) = ρ̇ρρ0, σσσ(t0) = σσσ0, σ̇σσ(t0) = σ̇σσ0,

ρρρ(tf ) = ρρρf , ρ̇ρρ(tf ) = 0, σσσ(tf ) = σσσf , σ̇σσ(tf ) = 0.

(3.2)
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The time dependencies have been omitted at the right hand side of the relative
motion dynamics for the sake of clarity. The following notation is employed
throughout the entire chapter. The body orientation with respect to the LVLH
frame is simply denoted as σσσ ≡ σσσB/L. Nonetheless, the body angular velocity
is referred to the inertial frame as ωωω ≡ ωωωB/I . In general, to ease the notation,
superscripts denoting the variables reference frames are omitted. The thrusters
control direction wp is always expressed in the body frame. The target orbital
radius rt, its orbit angular velocity ωωωL/I and its acceleration ω̇ωωL/I are a function
of its true anomaly, semi-major axis and eccentricity.

The following considerations have been implicitly made in problem (3.2):

• The translational relative motion is parameterized using cartesian coor-
dinates. The attitude is described using the modified Rodrigues param-
eters.

• At N + 1 predefined instants tj , each thruster could apply a control
impulse. The amplitude of the control impulse is bounded.

• The attitude control variable is the variation of the reaction wheels angu-
lar momentum. The reaction wheels angular momentum and its variation
are bounded below and above due to saturation.

• During the maneuver, the relative position has to be within the state
subset XLOS. This subset refers to the line-of-sight (LOS) region which
guarantees line-of-sight with the docking port and prevents collision with
the target (see Fig. 3.1).

• The initial orbit-attitude state is given. The desired terminal state would
leave the chaser motionless at a certain relative distance from the target
with an adequate orientation.

In any case, the objective function and constraints are detailed down below.

3.1.1 Objective function

The chosen objective function seeks to directly minimize fuel consumption. Ac-
cording to the Tsiolkovski rocket equation the fuel consumption is related to a
velocity increment as mF = m0

(
1− e−∆V/g0Isp

)
. Note that g0 = 9.80665 m/s2

is the Earth’s gravity at sea level and Isp is the thruster specific impulse. As-
suming all thrusters have the same specific impulse, the minimization of the
total fuel consumption is equivalent to minimize the summation of all the ap-
plied impulses. Then, the objective function is

J =
N∑
j=0

nT∑
p=1

∆Vp(tj). (3.3)

Note that the impulse amplitude of each thruster is always positive or null
∆Vp ≥ 0.
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Figure 3.1: Illustration of a six-degrees of freedom spacecraft ren-
dezvous.

3.1.2 Constraints

Three sets of constraints are considered in this problem. Firstly, path con-
straints on the relative position; secondly, both the thrusters and reaction
wheels have control limits; and finally, the translational and rotational states
are prescribed at the initial and final instants of the maneuver. In the sequel,
the relative position and velocity are stacked in the state x = [ρρρT , ρ̇ρρT ]T .

Path constraints

During the close rendezvous operation, the chaser must remain within a line-
of-sight area from the docking port while avoiding collision with the target
[Breger08]. This guarantees that the docking port is visible from the sensors of
the chaser. The LOS region is the half of a cone whose apex is the docking port.
In order to have a simpler linear constraint, the cone can be approximated
by five planes as {x ≥ cy(y − y0), x ≥ −cy(y + y0), x ≥ cz(z − z0), x ≥
−cz(z + z0), x ≥ 0} (see Fig. 3.2). Note that this represents a V-bar alike
approach where the constraint x ≥ 0 precludes collision with the target. The
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Figure 3.2: Line-of-sight region.

LOS constraint can be expressed algebraically as
−1 cy 0 0 0 0
−1 −cy 0 0 0 0
−1 0 cz 0 0 0
−1 0 −cz 0 0 0
−1 0 0 0 0 0


︸ ︷︷ ︸

ALOS

x(t) ≤


cyy0
cyy0
czz0
czz0
0


︸ ︷︷ ︸
bLOS

, (3.4)

where ALOS and bLOS are the line-of-sight inequality matrix and vector re-
spectively.

Control bounds

Due to physical limitations, the amount of control that thrusters and reaction
wheels can exert is limited.

Thrusters: the impulse amplitude is assumed to be bounded above (and
below by zero)

0 ≤ ∆Vp(tj) ≤ ∆V p, p = 1 . . . nT , (3.5)

where ∆V p is the maximum change of velocity that each thruster can provide.
The variable ∆Vp can take any value in the allowed interval. It is assumed
that the thruster valves opening times can be adjusted to produce the exact
amount of impulse amplitude.

Reaction wheels: each wheel saturates when a certain amount of angular
momentum is stored. Additionally, the reaction wheels variations are bounded
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due to physical limitations. The previous considerations yield

−Hrw ≤ Hrw(t) ≤ Hrw, (3.6)

−Ḣrw ≤ Ḣrw(t) ≤ Ḣrw, (3.7)

where Hrw is the maximum amount of angular momentum the wheels can

store on each axis whereas the term Ḣrw is their maximum rate of variation.
The reaction wheels array is considered to be symmetrical on its 3-axis, thus

Hrw = [Hrw, Hrw, Hrw]
T and Ḣrw = [Ḣrw, Ḣrw, Ḣrw]

T .

Boundary constraints

The chaser is assumed to depart from a given position and velocity with a
specific orientation and angular velocity

x(t0) = x0, σσσ(t0) = σσσ0, σ̇σσ(t0) = σ̇σσ0. (3.8)

The 6-DOF rendezvous operation finishes when a stationary relative position
and orientation is achieved as

x(tf ) = xf , σσσ(tf ) = σσσf , σ̇σσ(tf ) = 0, (3.9)

where xf = [ρρρTf ,0
T ]T . As Keplerian-based relative dynamics are unstable (see

Eq. (2.39)), further station-keeping (which is out of the scope of this work)
could be required to maintain this terminal condition.

3.2 State transition matrix and attitude flatness

Exploiting the state transition matrix and the attitude flatness property, the
orbit-attitude differential dynamics of the problem (3.2) will be transcribed to
algebraic relations.

3.2.1 Translational state transition

Using the Yamanaka-Ankersen transition matrix ΦΦΦ (see Eq. (2.36)) and the
instantaneous velocity changes of Eq. (2.58), the relative state propagation of
problem (3.2) is equivalent to

x(t) = ΦΦΦ(t, t0)x0 +

j∑
i=0

nT∑
p=1

ΦΦΦ(t, ti)BRT (σσσ(ti))wp∆Vp(ti),

tj ≤ t < tj+1,

(3.10)

where the state is continuous within the interval [tj , tj+1) between impulses.
The control direction of each thruster depends non-linearly on the vehicle ori-
entation through the rotation matrix.
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3.2.2 Attitude flatness

The angular dynamical system of the 6-DOF rendezvous problem 3.2 has the
differential flatness property [Louembet09].

Remark 3.1: a differentially flat system has the special property that all
its states and inputs can be explicitly expressed, using algebraic relations, as
a function of a flat output and a finite number of its derivatives [Fliess95].

For the external torque free attitude dynamics, the flat output can be
directly chosen as the attitude representation parameter [Louembet09]. Con-
sequently, in this case, the attitude dynamics of problem (3.2) are expressed
as a function of the MRP and its derivatives. Clearing the angular velocity
in the MRP kinematics (see Eq. (2.90)) and deriving the obtained expression
with respect to time one obtains

ωωω(t) = C(σσσ)−1σ̇σσ +R(σσσ)ωωωL/I , (3.11)

ω̇ωω(t) = Ċ(σσσ)−1σ̇σσ +C(σσσ)−1σ̈σσ + Ṙ(σσσ)ωωωL/I +R(σσσ)ω̇ωωL/I . (3.12)

Then, Eq. (3.11)-(3.12) are introduced into the attitude dynamics of Eq. (2.97)
and the reaction wheels angular momentum variation is cleared

Ḣrw(t) =− J−1
[
C−1(σσσ)

(
σ̈σσ − Ċ(σσσ)C−1(σσσ)σ̇σσ

)
+ Ṙ(σσσ)ω̇ωωL/I

]
−
(
C−1(σσσ)σ̇σσ +R(σσσ)ωωωL/I

)
×Htot.

(3.13)

This way, all the system variables have been expressed as algebraic functions of
the flat output and its derivatives. The key idea behind applying the flatness
property is to parameterize the flat output evolution, thus directly obtaining
the associated control as per Eq. (3.13).

The reaction wheels angular momentum can be also expressed as a function
of the flat output using the conservation of the total angular momentum (see
Eq. (2.96))

Hrw(t) = Htot − J
(
C−1(σσσ)σ̇σσ +R(σσσ)ωωωL/I

)
. (3.14)

Note that the dependencies with time have been omitted at the right-hand
sides of Eq. (3.11)-(3.14) for the sake of clarity.

3.2.3 Equivalent rendezvous planning problem

Using Eq. (3.10) transition and the attitude flatness relations of Eq. (3.13)-
(3.14), the differential dynamics of the 6-DOF rendezvous problem (3.2) are
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equivalently transcribed to algebraic relations as

minimize
∆Vp(tj), σσσ(t)

N∑
j=0

nT∑
p=1

∆Vp(tj),

subject to x(t) =

j∑
i=0

nT∑
p=1

ΦΦΦ(t, ti)BRT (σσσ(ti))wp∆Vp(ti)

+ΦΦΦ(t, t0)x(t0), tj ≤ t < tj+1,

ALOSx(t) ≤ bLOS,

0 ≤ ∆Vp(t) ≤ ∆V p, p = 1 . . . nT ,

−Hrw ≤ Hrw(σσσ(t), σ̇σσ(t)) ≤ Hrw,

− Ḣrw ≤ Ḣrw(σσσ(t), σ̇σσ(t), σ̈σσ(t)) ≤ Ḣrw,

x(t0) = x0, σσσ(t0) = σσσ0, σ̇σσ(t0) = σ̇σσ0,

x(tf ) = xf , σσσ(tf ) = σσσf , σ̇σσ(tf ) = 0.

(3.15)

This problem is still continuous with infinite degrees of freedom.

3.3 Optimal control computation

In this section, a method to solve the equivalent 6-DOF rendezvous problem
(3.15) is presented. The solution approach is based on a B-spline parameter-
ization of the flat output, σσσ, and the discretization of continuous constraints
(line-of-sight and reaction wheels control bounds). Finally, a warm-start initial
guess for the resulting NLP problem is provided.

3.3.1 Non-linear programming description

In this section, the necessary steps towards transforming problem (3.15) into
a finite tractable static program are described.

Impulses placement

The thrusters can be fired at N + 1 predefined number times. These are
considered to be equally spaced in time as tj = t0+j∆t, j = 0 . . . N with ∆t =
(tf − t0)/N . The firing times, tj , are denoted as nodes. During the intervals
between impulses, the attitude control system has to change the thrusters
orientation.

B-splines parameterization of the flat output

The attitude differential flatness property allows any kind of MRP parameteri-
zation as long as the time derivatives are continuous. Following [Louembet09],
B-splines (see Appendix A) for the details, are chosen to parameterize the flat
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output. This is due to their capability of describing flexible trajectories with
a high degree of differentiability using a low number of parameters. Conse-
quently,

σσσ(t) =

nc∑
i=1

Bi,q(t)ci, (3.16)

where Bi,q(t) ∈ R are qth order basis functions built on a sequence of knots
tknots ∈ Rnknots (which is defined below) and the coefficients ci ∈ R3 are control
points. By using Eq. (3.16), the attitude decision variable is the set of control
points ci. To have physical meaning, the attitude time evolution should be
continuous up to its second derivative, hence q ≥ 2. The number of control
points is chosen as nc = N + 5 where N + 1 correspond to each node and
the remaining ones allow to enforce initial and terminal conditions on the
MRP derivatives {σ̇σσ(t0), σ̈σσ(t0)} and {σ̇σσ(tf ), σ̈σσ(tf )} respectively. Therefore, the
number of knots must be nknots = N + q + 6. The knots sequence is built by
using the impulses nodes as a base. The q + 5 remaining knots are filled by
repetition of the initial and final nodes to the left and right

tknots = [ t0, . . . , t0︸ ︷︷ ︸
q/2+3 times

, t1, . . . , tN−1, tf , . . . , tf︸ ︷︷ ︸
q/2+3 times

]T . (3.17)

By choosing to repeat the initial and final nodes, the B-splines qth order con-
tinuity is maintained.

Discretization of continuous constraints

The continuous constraints of problem (3.15) are the line-of-sight region and
the reaction wheels control bounds (angular momentum storage and variation).
Each one of these constraints is discretized by enforcing them at some discrete
times within each interval j between impulses.

Line-of-sight constraint: within each interval between impulses, the LOS
constraint is enforced at nLOS equally spaced times separated by ∆tLOS =
∆t/nLOS

ALOSx(tj,l) ≤ bLOS, tj,l = t0 + (j − 1)∆t+ l∆tLOS,

j = 1 . . . N, l = 1 . . . nLOS.
(3.18)

Reaction wheels constraints: in the same way, the reaction wheels con-
straints are enforced at nrw instants between impulses. The instants are equally
separated by ∆trw = ∆t/nrw

−Hrw ≤ Hrw(tj,m, ci) ≤ Hrw, (3.19)

−Ḣrw ≤ Ḣrw(tj,m, ci) ≤ Ḣrw, (3.20)

tj,m = t0 + (j − 1)∆t+m∆trw, j = 1 . . . N, m = 0 . . . nrw.
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Compact formulation

Following [Gavilan12], to ease the notation, a compact formulation for the
discretized problem is developed. Let define stack vectors, xS ∈ R6nLOSN ,
∆VSp ∈ RN+1, σσσS ∈ R3(N+1) and cS ∈ R3nc , associated with the relative
state, each thruster impulse amplitudes, attitude at the nodes and the MRP
control points respectively

xS = [xT
1,1, . . . ,x

T
1,nLOS

,xT
2,1, . . . ,x

T
2,nLOS

,xT
3,1, . . . . . . ,x

T
N,nLOS

]T ,

∆VSp =


∆Vp,0

∆Vp,1
...

∆Vp,N

 , σσσS =


σσσ0

σσσ1
...

σσσN

 , cS =


c1
c2
...

cnc

 ,
(3.21)

and the stack matrices F ∈ R6nLOSN×6, Gp ∈ R6nLOSN×(N+1) and Kσ ∈
R3(N+1)×3nc

F =



ΦΦΦ(t1,1, t0)
...

ΦΦΦ(t1,nLOS , t0)
ΦΦΦ(t2,nLOS , t0)

...

...
ΦΦΦ(tN,nLOS

, t0)


, (3.22)

Gp =

ΦΦΦ(t1,1, t0)BRT (σσσ0)wp 06×1 . . . 06×1
...

...
. . .

...
ΦΦΦ(t1,nLOS , t0)BRT (σσσ0)wp 06×1 . . . 06×1

ΦΦΦ(t2,1, t0)BRT (σσσ0)wp ΦΦΦ(t2,1, t1)BRT (σσσ1)wp . . . 06×1
...

...
. . .

...
ΦΦΦ(t2,nLOS , t0)BRT (σσσ0)wp ΦΦΦ(t2,nLOS , t1)BRT (σσσ1)wp . . . 06×1

ΦΦΦ(t3,1, t0)BRT (σσσ0)wp ΦΦΦ(t3,nLOS , t1)BRT (σσσ1)wp . . . 06×1
...

...
. . .

...
...

...
. . .

...
ΦΦΦ(tN,nLOS

, t0)BRT (σσσ0)wp ΦΦΦ(tN,nLOS
, t1)BRT (σσσ1)wp . . . BRT (σσσN )wp



,

Kσ =


B1,q(t0)I B2,q(t0)I . . . Bnc,q(t0)I
B1,q(t1)I B2,q(t1)I . . . Bnc,q(t1)I

...
...

. . .
...

B1,q(tN )I B2,q(tN )I . . . Bnc,q(tN )I

 , (3.23)
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The relation between the stack vectors (see Eq. (3.21)) and matrices (see
Eq. (3.22)-(3.23)) is given by

xS = Fx0 +

nT∑
p=1

Gp(σσσS)∆VSp, σσσS = KσcS. (3.24)

In the same way, the reaction wheels constraints enforcement instants (see
Eq. (3.19)-(3.20)) can be compacted as

σσσS,rw = KσrwcS, σ̇σσS,rw = Kσ̇rwcS, σ̈σσS,rw = Kσ̈rwcS, (3.25)

where the vectors σσσS,rw, σ̇σσS,rw, σ̈σσS,rw ∈ R3nrwN stack the MRP and its deriva-
tives at the reaction wheels constraints enforcement instants. The stack matri-
ces Kσrw ,Kσ̇rw ,Kσ̈rw ∈ R3nrwN×3nc map the control points to the MRP and its
derivatives with a similar structure as Eq. (3.23). Using the previous formula-
tion, the stack vectors of the reaction wheels angular momentum and variation
can be considered as

HS,rw ≡ HS,rw(σσσS,rw, σ̇σσS,rw), ḢS,rw ≡ ḢSrw(σσσS,rw, σ̇σσS,rw, σ̈σσS,rw), (3.26)

where HS,rw, ḢS,rw ∈ R3nrwN . Let recall that the relation of the reaction
wheels angular momentum and its variation with the MRP and its derivatives
(thus, the same applies to the MRP control points) is non-linear according to
Eq. (3.13)-(3.14).

Six-degrees of freedom rendezvous static program

Joining the discretization of continuous constraints with the compact formu-
lation, the equivalent continuous planning problem (3.15) is reduced to a non-
linear program

minimize
∆VSp, cS

nT∑
p=1

∥∆VSp∥1,

subject to xS = Fx0 +

nT∑
p=1

Gp(σσσS)∆VSp, σσσS = KσcS,

AS,LOSxS ≤ bS,LOS,

0 ≤ ∆VSp ≤ ∆VSp, p = 1 . . . nT ,

−HS,rw ≤ HS,rw(σσσS,rw, σ̇σσS,rw) ≤ HS,rw,

− ḢS,rw ≤ ḢSrw(σσσS,rw, σ̇σσS,rw, σ̈σσS,rw) ≤ ḢS,rw,

σσσS,rw = KσrwcS, σ̇σσS,rw = Kσ̇rwcS, σ̈σσS,rw = Kσ̈rwcS,

Axf
xS = xf ,

σσσ(t0, cS) = σσσ0, σ̇σσ(t0, cS) = 0, σ̈σσ(t0, cS) = 0,

σσσ(tf , cS) = σσσf , σ̇σσ(tf , cS) = 0, σ̈σσ(tf , cS) = 0,

(3.27)
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where AS,LOS ∈ R5nLOSN×6nLOSN and bS,LOS ∈ R5nLOSN stack the LOS in-
equality matrix and vector (see Eq. (3.4)) as

AS,LOS =


ALOS 05×6 . . . 05×6

05×6 ALOS . . . 05×6
...

...
. . .

...
05×6 05×6 . . . ALOS

 , bS,LOS =


bLOS

bLOS
...

bLOS

 . (3.28)

The terms ∆VSp ∈ RN+1, HS,rw ∈ R3nrwN and ḢS,rw ∈ R3nrwN stack the max-
imum amplitude impulse, reaction wheels angular momentum and its variation
respectively

∆VSp =

∆V p
...

∆V p

 , HS,rw =

Hrw
...

Hrw

 , ḢS,rw =


Ḣrw
...

Ḣrw

 . (3.29)

The matrix Axf
∈ R6×6nLOSN extracts the final translational state (rendezvous

condition)

Axf
=

[
06(nLOSN−1)×6(nLOSN−1) 06(nLOSN−1)×6

06×6(nLOSN−1) I6×6

]
. (3.30)

Besides initial and terminal conditions on attitude and angular velocity, it has
been considered that the reaction wheels kinetic momentum and its variation
shall be null at the beginning and end of the maneuver. This is the reason why
the MRP second derivative is nullified at the initial and final instants of the
program (3.27).

3.3.2 Initial guess (warm-start)

Any non-linear programming solver requires an initial guess to compute an
optimal solution for problem (3.27). Accordingly, the convergence process can
be eased if the initial guess is close to the optimal value while respecting the
constraints from the very beginning. For this purpose, the solution to a sim-
plified problem is employed to initialize the NLP solver. This is named as a
warm-start because the simplified problem may not fullfil all the constraints.

In this case, a simplified rendezvous problem which only considers trans-
lational control is expressed as a quadratically constrained linear program
(QCLP). Then, the QCLP solution is converted to the NLP decision variables
∆VSp and cS.

Simplified rendezvous planning problem

The simplified rendezvous planning problem assumes full three-axis transla-
tional control. In the practice, this corresponds to have three pairs of opposite
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thrusters alligned with each LVLH direction. Under the previous consideration,
the relative state propagation is

x(t) = ΦΦΦ(t, t0)x0 +

j∑
i=0

ΦΦΦ(t, ti)B∆Vi, tj ≤ t < tj+1, (3.31)

where ∆V = [∆Vx,∆Vy,∆Vz]
T . In this hypothetical case, as the number of

control directions exactly matches the translational degrees of freedom, the
attitude control should only guarantee the alignment of the body frame with
respect to the LVLH frame. This causes translational and angular controls to
be decoupled.

Under the previous consideration, the simplified rendezvous program is

minimize
∆Vj

N∑
k=0

∥∆Vj∥1,

subject to x(tj,l) = ΦΦΦ(tj,l, t0)x0 +

j∑
i=0

ΦΦΦ(tj,l, ti)B∆Vi,

tj ≤ tj,l < tj+1,

ALOSx(tj,l) ≤ bLOS,

−max(∆V p)/
√
3 ≤ ∆Vj ≤ max(∆V p)/

√
3,

x(tf ) = xf ,

∆VT
0 Ai,σσσ0∆V0 = 0, i = 1, 2, 3,

∆VT
NAi,σσσN∆VN = 0, i = 1, 2, 3,

(3.32)

where the continuous line-of-sight constraint has been introduced directly in
the discrete form. The impulse amplitude on each translational direction is
conservatively constrained to not violate the upper bound of the most reac-
tive thruster in the array when all the simplified problem translational direc-
tions saturate simultaneously (thus the division by

√
3). The aim of the last

quadratic constraint is to generate an initial solution compatible with the pre-
scribed initial and terminal orientations in problem (3.27). To this end, the
quadratic constraints matrices Ai,σσσ0 and Ai,σσσN are defined as

Ai,σσσj =

δ(i− 1)− v21,j 0 0

0 δ(i− 2)− v22,j 0

0 0 δ(i− 3)− v23,j

 , (3.33)

where δ is the Dirac delta function (its value is the unity if the argument is zero
and null otherwise) and vj = [v1,j , v2,j , v3,j ]

T = R(σσσj)w1 with the subscript 1
denoting the most reactive thruster of the array (∆V 1 ≥ ∆V p ̸=1). This way,
the initial guess impulse sequence is compatible with the spacecraft orientation
at the start, σσσ0, and the end, σσσf . Note that the only unaccounted constraints
of the 6-DOF NLP problem (3.27) are the reaction wheels control bounds.
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NLP initial solution computation from six-thrusters QCLP solution

Once a solution of the QCLP (3.32) is obtained, the three-axis impulse sequence
is transferred to the array of thrusters as

∆V1,j = ∥∆Vj∥2, ∆Vp ̸=1,j = 0. (3.34)

It is remarked that the thruster labelled with the subscript 1 has the highest
impulse amplitude ∆V p.

The initial guess of B-spline control points, aS, is computed by match-
ing the three-axis translational control impulses to equivalent single-thruster
orientations. These orientations are obtained by aid of the rotation axis and
angle. Let denote by j∗i the nodes where there is a non-null impulse amplitude
(∥∆Vj∗i

∥2> 0) or an attitude is prescribed (instants t0, tf ). The subscript i
is just an internal counter of these situations. For those nodes, compute the
equivalent single-thruster pointing direction, vj∗i

,

vj∗i
=

∆Vj

∥∆Vj∥2
, j∗i = j, if (j = 0, N) ∨ (∥∆Vj∥2 > 0). (3.35)

Then, the rotation MRP, σσσrot, associated to consecutive orientations can be
computed. For the non-mandatory nodes where (j ̸= 0, N)∧ (∥Vj∗i

∥2 = 0), the
rotation MRP is interpolated. This yields

σσσrotj/j−1
= ej∗i tan

(
sjθj∗i
4

)
, sj =

j − j∗i−1

j∗i − j∗i−1

, tj−1, tj ∈ [tj∗i −1, tj∗i ], (3.36)

where the rotation axis, ej∗i , and angle, θj∗i are obtained through Eq. (3.35)
mandatory orientations

ej∗i =
vj∗i
× vj∗i−1

∥vj∗i
× vj∗i−1

∥2
, θj∗i = arccos(vT

j∗i
vj∗i−1

). (3.37)

This way, a well-defined and smooth attitude profile will be obtained. Since
θj∗i ∈ [−π, π], no singularities arise when computing σσσrot through Eq. (3.36).
The attitude at the nodes, σσσj , can be computed by applying the MRP attitude
composition rule Eq. (2.88) between nodes

σσσj =

(1− ∥σσσrotj/j−1
∥22)σσσj−1 + (1− ∥σσσj−1∥22)σσσrotj/j−1

+ 2σσσj−1 × σσσrotj/j−1

1 + (∥σσσrotj/j−1
∥2∥σσσj−1∥2)2 − 2σσσT

rotj/j−1
σσσj−1

,

for j = 1 . . . N, initialized with σσσ0.

(3.38)

The last step consists in obtaining the corresponding B-spline control points aS
matching the previous attitude sequence σσσj . By imposing boundary conditions
such as null first and second derivatives of the flat output at the initial and



74 3.4 Linearized MPC scheme

final instants (σ̇σσ0 = σ̈σσ0 = 0, σ̇σσN = σ̈σσN = 0), a linear system of 3nc equations
(remember that nc = N + 5 was chosen) with the 3nc unknown control points
can be posed (see [Kress98])



B1,q(t0)I B2,q(t0)I . . . Bnc,q(t0)I
B1,q(t1)I B2,q(t1)I . . . Bnc,q(t1)I

...
...

. . .
...

B1,q(tN )I B2,q(tN )I . . . Bnc,q(tN )I

Ḃ1,q(t0)I Ḃ2,q(t0)I . . . Ḃnc,q(t0)I

Ḃ1,q(tN )I Ḃ2,q(tN )I . . . Ḃnc,q(tN )I

B̈1,q(t0)I B̈2,q(t0)I . . . B̈nc,q(t0)I

B̈1,q(tN )I B̈2,q(tN )I . . . B̈nc,q(tN )I




c1
c2
...

cnc

 =



σσσ0

σσσ1
...

σσσN

0
0
0
0


. (3.39)

The solution can be obtained by inverting the matrix premultiplying the un-
known control points. Note that Bi,q(t) = 0 if t /∈ [tknots,i, tknots,i+q+1).

3.4 Linearized MPC scheme

By solving the NLP optimization problem (3.27), an open-loop control solu-
tion is obtained. In practice, control mishaps and unmodelled dynamics may
perturb this solution deviating the chaser from the planned trajectory. One
could directly update the control plan by obtaining new solutions of the NLP
problem. However, this approach is not friendly from an autonomous system
perspective. The computational time to obtain the NLP solution may overcome
the interval between impulses, thus failing to recalculate the control sequence.

Alternatively, by assuming the trajectory deviations are weak enough, the
linearization of the problem around the initial open-loop solution reduces the
program to quadratic programming. The decision variables are small incre-
ments with respect to the last available control sequence. Using the previous
linearized based approach, an MPC scheme is feasible. This consists in updat-
ing the decision variables on-line, sliding the control horizon forward in time,
by solving a QP problem after each impulse is applied. As the sliding control
horizon approach may cause infeasibilities because the terminal constraints are
advanced in time, these are relaxed by transforming them into terminal costs.

3.4.1 Linearized prediction model

Let define increments of each thruster impulse amplitude as ξp and of the
MRP control points as ∆cr. Introducing these increments in the relative state
transition, given by Eq. (3.10), and expanding the expression up to first-order
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one obtains

x(t) ≈ΦΦΦ(t, tk)xk +

k+j∑
i=k

nT∑
p=1

ΦΦΦ(t, ti)B

[
RT (cS)wp(∆Vp(ti) + ξp(ti))

+

k+nc∑
r=k+1

Rwp,cr(σσσi)∆cr∆Vp(ti)

]
, t ∈ [tk+j , tk+j+1),

k = 1 . . . N,

(3.40)

where k is the current MPC step (which increases as impulses are applied)
and Rwp,cr ∈ R3×3 is the Jacobian matrix resulting of the projection of each
thruster control direction in the LVLH frame, RT (σσσi)wp, with respect to the
MRP control point cr

Rwp,cr =
∂(R(σσσ)wp)

∂σσσ

∂σσσ

∂cr
. (3.41)

In accordance with Eq. (3.21)-(3.30) compact formulation, let define stack vec-
tors of the incremental decision variables ξξξSp(k) ∈ RN+1 and ∆cS(k) ∈ R3nc

as

ξξξSp(k) =

 ξp,k
...

ξp,k+N

 , ∆cS(k) =

 ck+1
...

ck+nc

 . (3.42)

As well, let define the stack matrix Gp,cS(k) ∈ R6nLOSN×3nc

Gp,cS(k) =

ΦΦΦ(tk+1,1, tk)∆xp,k+1(tk) . . . ΦΦΦ(tk+1,1, tk)∆xp,k+nc(tk)
...

. . .
...

ΦΦΦ(tk+1,nLOS
, tk)∆xp,k+1(tk) . . . ΦΦΦ(tk+1,nLOS

, tk)∆xp,k+nc(tk)
...

. . .
...

...
. . .

...
k+N∑
i=k

ΦΦΦ(tk+N,nLOS
, ti)∆xp,k+1(ti) . . .

k+N∑
i=k

ΦΦΦ(tk+N,nLOS
, ti)∆xp,k+nc(ti)


,

where ∆xp,k+r(tk+j) = B∆Rwp,ck+r
∆Vp,k+j . Note that, in a similar way as in

Eq. (3.39), the matrix ∆Rwp,ck+j
= 03×3 if tk+j /∈ [tknots,k+j , tknots,k+j+q+1).

Using the stack vectors and matrices, the following linear propagation, in a
compact form, is obtained

xS(k) ≈ Fxk +

nT∑
p=1

[
Gp(cS)(∆VSp + ξξξSp) +Gp,cS(∆VSp,σσσS)∆cS

]
, (3.43)

where the dependencies with k have been omitted at the right-hand side of
Eq. (3.43) for the sake of clarity. The increments on the impulse amplitude are
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accurately accounted for as the relative propagation was linear on this variable.
On the other hand, changes in the nodes orientation are linearly modelled
through the matrix Gp,cS though its effect is more complex. Note that if the
incremental decision variables are null, the original compact propagation of
Eq. (3.24) is recovered.

The reaction wheels angular momentum and its variation are also linearized
as

Hrw ≈ Hrw(σσσ, σ̇σσ) +

k+nc∑
r=k

(
∂Hrw

∂σσσ

∂σσσ

∂cr
+

∂Hrw

∂σ̇σσ

∂σ̇σσ

∂cr

)
∆cr,

Ḣrw ≈ Ḣrw(σσσ, σ̇σσ, σ̈σσ) +

k+nc∑
r=k

(
∂Ḣrw

∂σσσ

∂σσσ

∂cr
+

∂Ḣrw

∂σ̇σσ

∂σ̇σσ

∂cr
+

∂Ḣrw

∂σ̈σσ

∂σ̈σσ

∂cr

)
∆cr,

which can be expressed for all the constraints enforcement instants tk+j,m in a
compact formulation as

HS,rw(k) ≈ HS,rw(σσσS,rw, σ̇σσS,rw) + LHrw(σσσS,rw, σ̇σσS,rw)∆cS,

ḢS,rw(k) ≈ ḢS,rw(σσσS,rw, σ̇σσS,rw, σ̈σσS,rw) + LḢrw
(σσσS,rw, σ̇σσS,rw, σ̈σσS,rw)∆cS,

(3.44)

where the matrices LHrw ,LḢrw
∈ R3nrwN×3nc stack the reaction wheels angular

momentum and its variation first derivative with respect to the control points.
The dependency with the current MPC step k has been ommited at the right
hand side of Eq. (3.44) for the sake of clarity.

3.4.2 Linearized control program

The linearized control program mimics the NLP planning problem (3.27). How-
ever, the terminal constraints are transformed to costs in order to prevent in-
feasibilities as the MPC step advances over time [Chen98]. As analyzed in
[Limon06], relaxing the terminal constraints could potentially improve asymp-
totic stability (whose study is beyond the scope of this work). Under the previ-
ous considerations and using the linearized compact propagation of Eq. (3.43)
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the NLP problem (3.27) is linearized as

minimize
ξξξSp(k),∆cS(k)

nT∑
p=1

fTξ ξξξSp(k) + (xS(k)− xSf )
TQSxf

(k)(xS(k)− xSf )

+ (σσσS(k)− σσσSf )
TQSσf

(k)(σσσS(k)− σσσSf )

+ σ̇σσT
S(k)QSσ̇f

(k)σ̇σσT
S(k), k = 1 . . . N,

subject to xS(k) = Fxk +

nT∑
p=1

[
Gp(σσσS)(∆VSp + ξξξSp)

+ Gp,cS(∆VSp,σσσS)∆cS)
]
,

σσσS(k) = Kσ(k)cS(k),

AS,LOSxS(k) ≤ bLOS,

0 ≤ ∆VSp(k) + ξξξSp(k) ≤ ∆VSp,

−HS,rw ≤ HS,rw(k) + LHrw(k)∆cS(k) ≤ HS,rw,

− ḢS,rw ≤ ḢS,rw(k) + LḢrw
(k)∆cS(k) ≤ ḢSrw,

∆σσσ(tk,∆cS(k)) = σ̃σσk − σσσ(tk, cS(k)),

∆σ̇σσ(tk,∆cS(k)) = ˙̃σσσk − σ̇σσ(tk, cS(k)),

∆σ̈σσ(tk,∆cS(k)) = ¨̃σσσk − σ̈σσ(tk, cS(k)),

− ξξξSp ≤ ξξξSp(k) ≤ ξξξSp,

−∆cS ≤ ∆cS(k) ≤ ∆cS,

(3.45)

where σ̃σσ, ˙̃σσσ and ¨̃σσσ are the actual attitude and its derivatives at the end of
each MPC interval k. These measurements are necessary because the actual
attitude path may mismatch the planned one due to the employed continuous
constraints reduction (see Eq. (3.19)-(3.20)). The cost function vector premul-
tiplying the incremental impulses is

fξ = [1, 1, . . . , 1]T . (3.46)

Note that minimizing the incremental impulses would reduce impulse ampli-
tudes. The terminal quadratic matrices (QS,xf

, QSσf
, QSσ̇f

), and terminal
stack vectors (xS,f , σσσS,f ) are as follows

QSxf
=

h(k −N)Qxf
. . . 06×6

...
. . .

...
06×6 . . . h(k)Qxf

 , xS,f =

xf
...

xf ,

 , (3.47)

QSσf
= γσ

h(k −N)I . . . 03×3
...

. . .
...

03×3 . . . h(k)I

 , σσσS,f =

σσσf
...
σσσf

 , (3.48)
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QSσ̇f
= γσ̇

h(k −N)I . . . 03×3
...

. . .
...

03×3 . . . h(k)I

 , (3.49)

where h is the Heaviside step function which effectively slides the terminal
condition forward in time. This potentially helps to stabilize the terminal
condition as it is desired not only to reach the terminal state but to maintain
it. The relative state cost function yields

Qxf
=

[
γρI 03×3

03×3 γρ̇I

]
. (3.50)

The terms {γρ, γρ̇, γσ, γσ̇} ≥ 0 are penalty weights for each terminal condition
with respect to the fuel consumption. The linearized control program (3.45) is
a QP problem because its objective function is quadratic and its constraints are
linear. This is due to the relative states linear propagation given by Eq. (3.43)
and the linear relation of the MRP (flat output) and its derivatives with the
control points (see Eq. (3.16)).

3.4.3 MPC scheme

Using an initial open-loop solution of problem (3.27), a closed-loop MPC
scheme can be built with the linearized problem (3.45). The control sequence
is updated after each impulsive action. The details of the implemented MPC
strategy are expressed as pseudocode in Algorithm 1.

The most computational demanding step 4 can be computed off-line by
ground control segment and uplinked prior the operation beggining. This way,
no hard real-time requirements arise when computing the NLP problem solu-
tion (3.27). The steps 7-17 are performed on-line, thus requiring fast compu-
tations in order to update the control sequence. That is the main reason why
a QP problem (3.45) (under linearization assumptions) has been developed
instead of solving a NLP problem at each step. In [Hartley15b], quadratic
programming for elliptic rendezvous operations was proven feasible from a
computational perspective using field programmable gate arrays (FPGAs).

Note that steps 8-10 prescribe controls as the horizon is slided forward. As-
suming the terminal state is close to the desired one, a null impulse sequence
is prescribed (which would be corrected by small increments if needed). The
attitudes over the initial control horizon are prescribed to remain motionless
forward in time assuming the desired final orientation is met. Consequently,
in step 10, the reference B-splines control points are updated by adding the
previous considerations to the last computed reference orientations and subse-
quently solving the linear system of Eq. (3.39).
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Algorithm 1: MPC scheme for six-degrees of freedom rendezvous

1 begin
2 Obtain a solution of the QCLP problem (3.32);
3 Transform the QCLP solution to NLP decision variables (initial

guess) using Eq. (3.34)-(3.39);
4 Obtain a solution of the NLP problem (3.27), ∆VSp and cS;

5 Apply ∆Vp(t0) and Ḣrw(t, cS) for t ∈ [t0, t1);
6 Initialize the MPC step k = 1;
7 while k < N do
8 Prescribe reference controls at N + k:
9 ∆Vp,N+k=0,

10 σσσ(tN+k, cS(k)) = σσσf , σ̇σσ(tN+k, cS(k)) = 0,

σ̈σσ(tN+k, cS(k)) = 0
Eq. (3.39)
======⇒ cS(k);

11 Obtain the solution of the QP linearized rendezvous problem
(3.45), ξξξSp(k) and ∆cS(k);

12 Update the control sequence:
13 ∆VSp(k) = ∆VSp(k) + ξξξSp(k),
14 cS(k) = cS(k) + ∆cS(k);

15 Apply ∆Vp(tk) and Ḣrw(t) for t ∈ [tk, tk+1);
16 Update the MPC step, k ← k + 1;

17 end
18 Apply the final braking impulse ∆Vp(tN );

19 end
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3.5 Numerical results

The developed formulation allows to freely choose any array of impulsive
thrusters (as long as they are aligned with the center of mass) and inertia
matrix. To test that feature, two different spacecraft configurations are go-
ing to be analyzed. The first one is a traditional heavy cargo chaser spacecraft
overequipped with ten thrusters. The second one considers a lightweight space-
craft with only two thrusters available. Additionally, the simulation model is
non-linear and mishaps on the impulses application are added. This allows to
assess the MPC capability in terms of disturbances rejection.

The simulations have been done in a MATLAB environment using Gurobi
optimization package (see [Gurobi14]) as QCLP and QP solver. The open-
source IPOPT optimization package (see [IPOPT16]) is used as NLP solver.

3.5.1 Simulation model and controller parameters

Next, the detailed simulation and tuning parameters are detailed.

Simulation model

The simulation model assumes a target Keplerian orbit and non-linear relative
motion dynamics of Eq. (2.24) without orbital perturbations but with mishaps
on the impulses application

ρ̈ρρ(t) = −ω̇ωωL/I × ρρρ− 2ωωωL/I × ρ̇ρρ−ωωωL/I ×ωωωL/I × ρρρ− µ(rt + ρρρ)

∥rt + ρρρ∥32
+

µrt
r3t

,

ρ̇ρρ+(tk) = ρ̇ρρ(tk) +

nT∑
p=1

RT (σσσ(tk))∆R(δδδθθθ)wp(1 + ϵ∆Vp)∆Vp(tk),

r̈t(t) = −
µrt(t)

r3t (t)
,

where µ = 398600.4 km3/s2 is the Earth’s standard gravitational parameter.
The dependence with time has been omitted at the right hand side of the
relative dynamics for the sake of clarity. Since the target is passive, the only
control are the instantaneous velocity changes of the chaser. The impulse
mishaps are caused by a multiplicative disturbance, ϵ∆Vp , and a thrusters array
misalignment matrix ∆R. These effects are modelled as random Gaussian
distributions as stated in Eq. (2.68)-(2.69). The additive noise component has
not been considered, thus δδδV = 0.

The attitude model is assumed to perfectly match the prediction one (ex-
ternal torque free), hence Eq. (2.90) and Eq. (2.97) apply. Under the presence
of perturbations, a low-level attitude controller, though out of the scope of this
work, may further help to acquire the planned orientations. In any case, it
should be noted that the impulses orientation is not perfect due to the mis-
alignment matrix.
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Controller parameters

In the simulations, the line of sight region is characterized by cy = cz =
1/ tan(π/4) and y0 = z0 = 2.5 m. This represents a 90◦ angular aperture
from the docking port. The details on the duration, array of thrusters, reac-
tion wheels, initial and terminal constraints are given in each scenario section.

Regarding MPC tuning parameters (for both scenarios) the MRP B-splines
degree is chosen to be quintic. This is equivalent to take q = 5 in Eq. (3.16).
The intervals between impulses is chosen as N = 20, hence the amount of
impulses is twenty one. The constraints enforcement parameters are taken as
nLOS = 2 (see Eq. (3.18)) and nrw = 12 (see Eq. (3.19)-(3.20)). The objective
function weights are tuned as γρ = 10, γρ̇ = 5, γσ = 2 and γσ̇ = 1.

3.5.2 Cargo spacecraft

This scenario analyzes a traditional chaser cargo spacecraft (e.g. Soyuz ren-
dezvous with ISS). This spacecraft has the array of thrusters shown in Table 3.1.
The target is flying in an eccentric low Earth orbit with e = 0.1, hp = 600 km
and ν(t0) = π/4. The term hp is the periapsis altitude. The chaser inertia ma-

p wp ∆V p p wp ∆V p

1 [1, 0, 0]T 1 m/s 6 [0, 0,−1]T 1 m/s

2 [−1, 0, 0]T 1 m/s 7 [
√
2/2,
√
2/2, 0]T 1 m/s

3 [0, 1, 0]T 1 m/s 8 [
√
2/2,−

√
2/2, 0]T 1 m/s

4 [0,−1, 0]T 1 m/s 9 [−
√
2/2,
√
2/2, 0]T 1 m/s

5 [0, 0, 1]T 1 m/s 10 [−
√
2/2,−

√
2/2, 0]T 1 m/s

Table 3.1: Array of thrusters for the cargo spacecraft.

trix is chosen to be of the same order of magnitude than the Russian Progress
cargo spacecraft [Fehse03],

J =

31 0 0
0 31 0
0 0 5

 · 103 kg ·m2. (3.51)

The reaction wheels angular momentum and its variation upper limits are taken

asHrw = [500, 500, 500]T N·m·s and Ḣrw = [20, 20, 20]T N·m respectively. The
initial and terminal conditions of the 6-DOF maneuver are shown in Table 3.2.
The vector θθθ is filled with the Euler angles sequence {zxz} representing the
body orientation with respect to the LVLH frame. Note that with a number
of intervals N = 20 and a maneuver duration of tf − t0 = 15 min, the MPC
sampling rate is ∆t = 45 s. The initial total angular momentum is Htot =
JR(σσσ0)ωωω0 = [0,−33.3649, 0]T N ·m · s which is conserved over time. Let recall
that ωωω = ωωωB/L +ωωωL/I . The impulses mishaps statistical properties are stated



82 3.5 Numerical results

Variable Initial Terminal

t 0 min 15 min
ρρρ [400,−250,−200]T m [2, 0, 0]T m
ρ̇ρρ [1, 1,−1]T m/s [0, 0, 0]T m/s
θθθ [0◦, 0◦, 0◦]T [90◦, 90◦, 90◦]T

ωωωB/L [0, 0, 0]T ◦/s [0, 0, 0]T ◦/s

Table 3.2: Initial and terminal conditions for the cargo spacecraft.

in Table 3.3. A misalignment on the array of thrusters and a multiplicative
mishap in the thrust level has been considered. Nonetheless, the additive
disturbance has not been taken into account.

Variable Bias Covariance

Misalignment angles δθδθδθ [1◦, 1◦, 1◦]T I(◦)
2

Multiplicative ϵ∆Vp 0.02 0.05
Additive δδδVp [0, 0, 0] m/s 03×3 (m/s)2

Table 3.3: Statistical properties of impulses mishaps for the cargo
spacecraft.

Under the previous conditions, 100 random realizations of the impulses
mishaps have been simulated. For all the realizations, the linear QP program
was always feasible and the chaser reaches the proximity of the target without
trespassing the LOS region (see Fig. 3.3-3.4). A typical attitude profile is shown
in Fig. 3.6. For this attitude evolution, the desired final orientation (σσσf =
[0,−0.4142, 0]T ) is met whereas the angular velocity is driven to a quasi-null
value due to the sliding horizon which plans how to maintain the spacecraft in
the target neighbourhood over another control horizon. The terminal accuracy
details are given in Table 3.4. The operator δ represents the mismatch between
the obtained and the desired value (e.g. δρ(tf ) = ∥ρρρ(tf )−ρρρf∥2). If one observes
the planned impulses, for the first random realization in Fig. 3.5, the thrusters
{2,5,6,7,9,10} apply relevant firings while thrusters {1,3,4,8} are not operated
significantly along the maneuver. In Fig. 3.7 it is shown that the reaction
wheels have saturations (both on angular velocity and acceleration) close to
the maneuver initial and final instants, but then desaturate immediately and
keep providing torque (the reaction wheels angular momentum peak of the
converted solution from QCLP was reduced in a 80.31% by the NLP solution).

Regarding fuel consumption, the NLP program reduces the QCLP prob-
lem initial guess in a 21.642% (see Table 3.5). This is to be expected as
it is more efficient, from the fuel consumption perspective, to align a specific
thruster with the control direction (by rotating the spacecraft) than firing three
thrusters simultaneously. The closed-loop MPC increases its fuel consumption



3.5 Numerical results 83

5002500

y [m]
-250-500500

250

x [m]

-250

0

250

500

-500
0

z
[m

]

Departure
Trajectories
LOS region
Target

Figure 3.3: Random realizations for the trajectories of the cargo space-
craft.
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Figure 3.4: Random realizations for the trajectories projection on the
target orbital plane of the cargo spacecraft.
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Figure 3.5: Computed impulses for the first random realization of the
cargo spacecraft.
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Figure 3.7: Reaction wheels angular momentum and its variation for
the first random realization of the cargo spacecraft.

with respect to the NLP solution. This makes sense because compensating
the impulses mishaps requires to deviate from the the optimal open-loop plan.
The computational times are shown in Table 3.6. The percentage indicates
the computational time with respect to the MPC sampling interval (45 s). It
is clear that using a NLP optimization (∼ 2 min computation) for closed-loop
MPC is infeasible as it overcomes the sampling interval. The QP problem
always consumes less than 5% of the sampling interval to update the control
plan. This may be still not enough for real-time autonomy but the results
provide a good starting point to achieve that.

Variable Mean 1-sigma

δρ(tf ) 1.2258 m 0.6056 m
δρ̇(tf ) 2.8354 cm/s 1.0597 cm/s
δθθθ(tf ) [90.554◦, 91.498◦, 90.057◦]T [1.0720◦, 1.0840◦, 0.5884◦]T

δωB/L(tf ) 0.1382 ◦/s 0.0178 ◦/s

Table 3.4: Control accuracy in the terminal conditions for the random
realizations of the cargo spacecraft.
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Mean 1-sigma

QCLP 4.0823 m/s 0 m/s
NLP 3.1988 m/s 0 m/s
MPC (QP) 3.3488 m/s 0.0748 m/s

Table 3.5: Total ∆V of the initial guess, open-loop and closed-loop
solutions for the cargo spacecraft.

Mean 1-sigma Max.

NLP 118.28 s / 263% 0 / 0% 118.28 s / 263%
MPC (QP) 1.6470 s / 3.66% 0.3636 s / 0.80% 1.8806 s / 4.18%

Table 3.6: Computational time and its percentage over the sampling
interval of the cargo spacecraft.

3.5.3 Lightweight spacecraft

In this scenario, a lightweight chaser (equipped with only two thrusters) has
to rendezvous with a target in an eccentric low Earth orbit with e = 0.5,
hp = 400 km and ν(t0) = π. The thrusters are mounted in an orthogonal
configuration as shown by Table 3.7. The inertia matrix of the lightweight

p wp ∆V p

1 [0, 0, -1]T 0.5 m/s
2 [-1, 0, 0]T 0.5 m/s

Table 3.7: Array of thrusters for the lightweight spacecraft.

satellite is chosen to coincide with the CNES small satellite MYRIADE (see
[Louembet09])

J =

 40 −3 −0.5
−3 28 −1
−0.5 −1 45

 kg ·m2. (3.52)

The reaction wheels angular momentum and its variation bounds are taken

as Hrw = [1, 1, 1]T N · m · s and Ḣrw = [0.05, 0.05, 0.05]T N · m, respectively.
The initial and terminal conditions for the 6-DOF maneuver are given by Ta-
ble 3.8. The total angular momentum is computed as Htot = JR(σσσ0)ωωω0 =
[0.4619,−4.3110, 0.1540]T · 10−3 N · m · s. The impulses mishaps statistical
properties for the lightweight satellite are shown in Table 3.9. The noises
has been reduced with respect to the heavy cargo spacecraft because a two
thrusters configuration is underactuated. It is expected that the closed-loop
MPC of this scenario can deal with less perturbations than the heavy cargo
spacecraft which can exert control in any direction. Note that no biases have
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Variable Initial Terminal

t 0 min 15 min
ρρρ [350, 200, 200]T m [2, 0, 0]T m
ρ̇ρρ [1, 1,−1]T m/s [0, 0, 0]T m/s
θθθ [0◦, 0◦, 0◦]T [90◦, 90◦, 90◦]T

ωωωB/L [0, 0, 0]T ◦/s [0, 0, 0]T ◦/s

Table 3.8: Initial and terminal conditions for the lightweight space-
craft.

been considered for the misalignment angles and the multiplicative term to the
thrust level.

Variable Bias Covariance

Misalignment angles δθδθδθ [0◦, 0◦, 0◦]T I(◦)
2

Multiplicative ϵ∆Vp 0 0.01
Additive δδδVp [0, 0, 0] m/s 03×3 (m/s)2

Table 3.9: Statistical properties of impulses mishaps for the
lightweight spacecraft.

A total of 100 random realizations of the impulses mishaps have been sim-
ulated. Similar conclusions with respect to the previous scenario still hold (see
Fig. 3.8-3.9). In this case, the desired final orientation is not favourable to
brake the spacecraft because the thruster 1 nozzle has to be aligned with the
+x LVLH direction and the thruster 2 nozzle aligns with the −z direction.
The terminal accuracy is shown in Table 3.10 (it shows a superior accuracy
on the final relative state than the heavy cargo scenario due to the lighter
perturbations in comparison). Let recall that the Euler angles, between the
body and the LVLH frame, are represented in the {zxz} sequence through θθθ.
For the first random realization in Fig. 3.10, it can be observed that the final
braking impulses are drastically advanced due to the impossibility of braking
with the desired final orientation. As a consequence of this, the attitude ter-
minal accuracy degrades with respect to the heavy cargo scenario as it can
be observed from the first random realization (see Fig. 3.11), and the overall
results of Table 3.10. The reaction wheels saturation peak has been lowered
from 5.6927 N ·m · s (QCLP solution converted to NLP solution) to its upper
limit of 1 N ·m · s (see Fig. 3.12).

In this case, the fuel consumption of the initial guess is reduced in a 9.20%
with the final NLP solution (see Table 3.11). Again, the computational benefit
of the linearized MPC scheme, yielding a QP optimization, can be deduced
from Table 3.12. The NLP solution takes ∼ 1 min of computation (which
overcomes the MPC sampling interval duration) while the worst-case MPC
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Figure 3.10: Computed impulses for the first random realization of
the lightweight spacecraft.
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Figure 3.12: Reaction wheels angular momentum and its variation for
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computation takes ∼ 2 s (2.48% of the sampling interval duration) with an
average value of ∼ 1 s (4.53% of the sampling interval duration).

Variable Mean 1-sigma

δρ(tf ) 0.6962 m 0.2798 m
δρ̇(tf ) 1.1286 cm/s 0.5897 cm/s
δθθθ(tf ) [94.658◦, 94.197◦, 89.313◦]T [5.5401◦, 2.5801◦, 1.8416◦]T

δωB/L(tf ) 0.3138 ◦/s 0.1499 ◦/s

Table 3.10: Control accuracy in the terminal conditions for the ran-
dom realizations of the lightweight spacecraft.

Mean 1-sigma

QCLP 3.4254 m/s 0 m/s
NLP 3.1102 m/s 0 m/s
MPC (QP) 3.1481 m/s 0.0266 m/s

Table 3.11: Total ∆V of the initial guess, open-loop and closed-loop
solutions for the lightweight spacecraft.
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Mean 1-sigma Max.

NLP 68.930 s / 153% 0 / 0% 68.930 s / 153%
MPC (QP) 1.1158 s / 2.48% 0.1791 s / 0.40% 2.0403 s / 4.53%

Table 3.12: Computational time and its percentage over the sampling
interval of the lightweight spacecraft.



92 3.5 Numerical results

This page is intentionally left blank.



Chapter 4

Robust model predictive
control for near-rectilinear
halo orbits spacecraft
rendezvous

That’s one small step for man,
one giant leap for mankind.

Neil Armstrong

Contents

4.1 Rendezvous planning problem . . . . . . . . . . . . . 95

4.1.1 Objective function . . . . . . . . . . . . . . . . . . . 96

4.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Rendezvous problem robustification . . . . . . . . . 97

4.2.1 State transition . . . . . . . . . . . . . . . . . . . . . 97

4.2.2 Gaussian additive disturbances . . . . . . . . . . . . 98

4.2.3 Robust rendezvous planning problem . . . . . . . . . 99

4.3 Robust control computation . . . . . . . . . . . . . . 99

4.3.1 Chance-constrained implementation . . . . . . . . . 100

4.3.2 Quadratic programming description . . . . . . . . . 102

4.4 Robust MPC scheme with disturbance estimation 107

4.4.1 Robust control program . . . . . . . . . . . . . . . . 107

4.4.2 On-line disturbance estimator . . . . . . . . . . . . . 108

4.4.3 Robust MPC scheme . . . . . . . . . . . . . . . . . . 109

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . 111

4.5.1 Simulation model and controller parameters . . . . . 111

4.5.2 Impulsive thrusters scenario . . . . . . . . . . . . . . 114

4.5.3 Continuous thrusters scenario . . . . . . . . . . . . . 119

93



94

This chapter presents a robust model predictive controller to rendezvous
with a target placed in a near-rectilinear halo orbit. This work has been pub-
lished in the journal article [Sanchez20a]. The near-rectilinear halo orbits are
a special subset of the halo family that surrounds a Lagrange point in a re-
stricted three-body problem context. This means that the relative motion
between both vehicles has to be characterized under the restricted three-body
problem model. The previous case is of practical interest to operate the future
Lunar Orbital Platform (LOP-G) in cislunar space.

The rendezvous maneuver is assumed to take place in close proximity. This
means that the relative distance is negligible with respect to the target distance
with each primary, r1t/∥ρρρ∥2 ≪ 1 and r2t/∥ρρρ∥2 ≪ 1. Under the previous as-
sumption, the linear relative motion model for RTBP as per Eq. (2.54) applies.
The target is assumed as passive and its orbit is known. Let recall that the
RTBP linear system does not admit a closed-form of a transition matrix due
to the numerical parameterization of the target orbit. The chaser is consid-
ered capable of performing maneuvers in any control direction. Consequently,
only the translational control problem is treated. The control thrusters can be
either impulsive (see Eq. (2.58)) which models with adequate accuracy chemi-
cal or cold gas thrusters; or continuous (see Eq. (2.65)) which models electric
thrusters.

In this case, the main control goal is to robustify the closed-loop MPC. A
robust method includes any information of the disturbances on its formulation,
thus being able to ensure constraints satisfaction (e.g. line-of-sight region) by
anticipation. Several forms of robust MPC controllers has been previously em-
ployed in Keplerian-based rendezvous operations such: chance-constrained in
[Gavilan12]; the worst-case scenario in [Louembet15]; the tube-based method
in [Mammarella18]. This work follows the chance-constrained approach of
[Gavilan12]. This method considers explicitly the disturbances statistical prop-
erties in the prediction model and tightens the constraints accordingly (with a
bounding term) so that they are satisfied with a certain probability. By doing
so, it is expected that the level of constraints satisfaction improves drastically
with respect to a classical non-robust MPC formulation.

The chance-constrained approach largely relies in the prior knowledge of
the disturbances statistical properties. As a matter of fact, any robust con-
troller relies on that knowledge (e.g. the worst-case scenario plans for the
strongest deviation). However, it may be the case where this information is
inaccurate or unavailable from the very beginning. To overcome the previous
issue, the methodology is completed with an on-line disturbance estimator.
The estimator infers the disturbance by quantifying the discrepancy between
the predicted and actual state.

Precisely, the employed methodology is as follows: firstly, the RTBP ren-
dezvous problem is stated in the general continuous form of Eq. (1.1); secondly,
a stochastic prediction model is developed; thirdly, the constraints bounding
term computation according to the chance-constrained approach is introduced
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and the associated robust control program is derived; finally, the on-line distur-
bance estimator is presented. The resulting robust control program is quadratic
while the bounding term and on-line disturbance estimator computation only
involve algebraic operations. The main source of computational burden is the
numerical integration to derive the state transition matrices. Nevertheless, the
transition matrices can be precomputed, thus not requiring to compute them
along the maneuver.

The chapter concludes with a numerical results section. The analysed sce-
nario is the rendezvous with a target placed in an L2 southern NRHO of the
Earth-Moon system. The developed robust MPC algorithm is compared with a
classic non-robust MPC. The results show the superior constraints satisfaction
of the robust algorithm with respect to its non-robust counterpart.

4.1 Rendezvous planning problem

In a general way, the RTBP rendezvous planning problem (considering both
chemical and electric thrusters) states as follows

minimize
∆V(tj), u(t)

J(∆V(tj),u(t)),

subject to ρ̈ρρ(t) = −2ωωωL/I × ρ̇ρρ− ω̇ωωL/I × ρρρ−ωωωL/I × (ωωωL/I × ρρρ)

−
2∑

i=1

(
µi/r

3
it

) [
I− 3

(
ritr

T
it/r

2
it

)]
ρρρ+ u,

ρ̇ρρ+(tj) = ρ̇ρρ(tj) + ∆V(tj),

u(t) =

nc∑
i=1

Bi,q(t)ζζζi,

−∆V ≤ ∆V(tj) ≤ ∆V,

− u ≤ u(t) ≤ u,

ρρρ(t) ∈ XLOS,

ρρρ(t0) = ρρρ0, ρ̇ρρ(t0) = ρ̇ρρ0,

ρρρ(tf ) = ρρρf , ρ̇ρρ(tf ) = 0.

(4.1)

The time dependencies have been omitted at the right-hand side of the relative
translational dynamics for the sake of clarity. The following considerations have
been made in problem (4.1):

• The relative motion is parameterized through cartesian coordinates in
the RTBP LVLH frame (see Fig. 2.3). The linear relative motion model
for the restricted three-body problem is considered.

• At N + 1 predefined instants tj , the impulsive thrusters could apply a
control impulse. The impulse amplitude is bounded.
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• The continuous control acceleration is parameterized with B-splines (see
Eq. (2.65)). Then, the underlying decision variable is the set of control
points ζζζi.

• During the maneuver, the relative position has to be within the state
subset XLOS. This is the LOS region which guarantees line-of-sight with
the docking port and prevents collision with the target.

• The initial relative state is given. The desired terminal relative state
would leave the chaser motionless at a certain relative distance from the
target.

The objective function and constraints are detailed below.

4.1.1 Objective function

The chosen objective function seeks to minimize the control energy

J =
N∑
j=0

∆VT (tj)∆V(tj) +
γu

tf − t0

∫ tf

t0

uT (t)u(t)dt, (4.2)

where γu ≥ 0 weights the relative cost of the continuous acceleration with
respect to the impulsive action. Since the continuous acceleration is parame-
terized by B-splines, for the sake of simplicity, the continuous acceleration cost
is approximated as

J ≈
N∑
j=0

∆VT (tj)∆V(tj) + γζ

nc∑
i=1

ζζζTi ζζζi, (4.3)

which follows the logic that ζζζi = 0 (∀i = 1 . . . nc) −→ u(t) = 0.

4.1.2 Constraints

Similarly to the six-degrees of freedom rendezvous (see Chapter 3), three sets
of constraints are considered for its RTBP counterpart. These are: path con-
straints on the relative position; control bounds; initial and terminal conditions
on the relative state. From now, on the relative state defined as x = [ρρρT , ρ̇ρρT ]T

is employed.

Path constraints

As in Keplerian-based rendezvous, for sensing and safety reasons, the ren-
dezvous operation has to take place along a predefined corridor from the dock-
ing port. Assuming a V-bar alike approach and using the restricted-three body
problem local-vertical local-horizontal frame (see Fig.2.3) the line-of-sight con-
straints yields

ALOSx(t) ≤ bLOS, (4.4)

where the inequality matrix and vector have the same structure of Eq. (3.4).
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Control bounds

Both the impulsive and continuous acceleration thrusters have bounds on its
control signal due to physical limitations.

Impulsive thrusters: the impulses amplitude are constrained as

−∆V ≤ ∆V(tj) ≤ ∆V, (4.5)

where the same limits, in absolute value, apply for the lower and upper bounds.

Continuous thrusters: the exerted control acceleration is limited by

−u ≤ u(t) ≤ u −→ −u ≤
nc∑
i=1

Bi,q(t)ζζζi ≤ u, (4.6)

whose treatment is the same as the reaction wheels angular momentum varia-
tion case (see Eq. (3.7)).

Boundary constraints

The goal of the rendezvous operation is to depart from an initial relative state
in order to reach a final relative position without relative velocity

x(t0) = x0, x(tf ) = xf , (4.7)

where xf = [ρρρTf ,0
T ]T .

4.2 Rendezvous problem robustification

The first step to robustify the rendezvous planning problem (4.1) is to exploit
the state transition matrix and control integration. This allows to express
the relative state, at any time, with an explicit mathematical expression. In
that expression, a random discrete additive disturbance to the relative state is
added. As such, the relative state is also a random variable over time. The
disturbance represents statistically the mismatch between the predicted and
current state. Finally, the original problem (4.1) is presented in a robust form.

4.2.1 State transition

Under linear RTBP relative dynamics, continuous acceleration and instanta-
neous changes of velocity, the relative state can be explicitly propagated as

x(t) = ΦΦΦ(t, t0)x0 +

∫ t

t0

ΦΦΦ(t, τ)Bu(t)dt+

j∑
i=0

ΦΦΦ(t, ti)B∆V(ti),

tj ≤ t ≤ tj+1.

(4.8)
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The state transition matrix is computed by integrating Eq. (2.51) as

Φ̇ΦΦ(t, t0) = A(t)ΦΦΦ(t, t0), t ≥ t0, (4.9)

where

A(t) =

 03×3 I

−Ω̇ΩΩL/I −ΩΩΩ2
L/I −

2∑
i=1

µi

r3it

(
I− 3

ritr
T
it

rit

)
−2ΩΩΩL/I

 . (4.10)

4.2.2 Gaussian additive disturbances

Let assume a Gaussian additive disturbance δδδx ∼ N6(δ̂δδx,ΣΣΣδδδx) affecting the
relative state at discrete instants tj

x(t) =ΦΦΦ(t, t0)x0 +

∫ t

t0

ΦΦΦ(t, τ)Bu(t)dτ +

j∑
i=0

ΦΦΦ(t, ti)B∆V(ti)

+

j∑
i=0

ΦΦΦ(t, ti)δδδx(ti), tj ≤ t ≤ tj+1.

(4.11)

Then, the relative state is propagated according to a Gaussian stochastic pro-
cess x(t) ∼ N6(x̂(t),ΣΣΣx(t)), where

x̂(t) =ΦΦΦ(t, t0)x0 +

∫ t

t0

ΦΦΦ(t, τ)Bu(t)dτ +

j∑
i=0

ΦΦΦ(t, ti)B∆V(ti)

+

j∑
i=0

ΦΦΦ(t, ti)δ̂δδx(ti),

ΣΣΣx(t) =

j∑
i=0

ΦΦΦT (t, ti)ΣΣΣδδδx(ti)ΦΦΦ(t, ti), tj ≤ t ≤ tj+1.

(4.12)

It should be noticed that a discrete additive Gaussian disturbance may be less
realistic than a continuous disturbance. However, the discrete form provides a
simplified Gaussian stochastic process of the relative state. Additionally, as it
contemplates both position and velocity errors, it can be seen as a measurement
of the accumulated uncertainty between the impulses intervals.
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4.2.3 Robust rendezvous planning problem

Under the stochastic propagation of the relative state as per Eq. (4.11), the
original rendezvous planning problem (4.1) is robustified as follows

minimize
∆V(tj), ζζζi

N∑
j=0

∆VT (tj)∆V(tj) + γζ

nc∑
i=1

ζζζTi ζζζi,

subject to x(t) = ΦΦΦ(t, t0)x0 +

∫ t

t0

ΦΦΦ(t, τ)Bu(t)dτ

+

j∑
i=0

ΦΦΦ(t, ti)B∆V(ti) +

j∑
i=0

ΦΦΦ(t, ti)δδδx(ti),

tj ≤ t ≤ tj+1,

δδδx(t) ∼ N6(δ̂δδx(t),ΣΣΣδδδx(t)),

u(t) =

nc∑
i=1

Bi,q(t)ζζζi,

−∆V ≤ ∆V(tj) ≤ ∆V,

− u ≤ u(t) ≤ u,

P (ALOSx(t) ≤ bLOS) ≥ p,

x(t0) = x0, x̂(tf ) = xf .

(4.13)

The terminal condition on the relative state is posed in terms of its mean value
while the line-of-sight constraint is enforced to be fullfiled above a certain prob-
ability p. To achieve the line-of-sight constraint satisfaction in a probabilistic
sense, the chance-constrained approach will be further developed in the sequel.
The rationale behind this approach is shown in the sketch of Fig. 4.1. It can
be observed that knowing the relative state statistical distribution would allow
to tighten the constraint in order to enforce its satisfaction in the majority
of cases. Note that guaranteeing a 100% of constraints satisfaction is infea-
sible since the disturbance is a Gaussian distribution which is unbounded by
definition.

4.3 Robust control computation

This section implements the chance-constrained approach in order to ensure
the probabilistic satisfaction of the LOS constraints. To do so, a deterministic
bounding term to the non-robust LOS constraints is added. This bounding
term mainly depends on the disturbances statistical properties. Then, the
resulting deterministic continuous problem is discretized and some of its con-
straints are relaxed. The outcome a quadratic program that allows to compute
a robust control plan.



100 4.3 Robust control computation

Figure 4.1: Robust satisfaction of constraints.

4.3.1 Chance-constrained implementation

In order to enforce the line-of-sight constraints above a certain probability p,
their inequality (under the relative state mean) can be tightened by adding a
bounding term bδx = [b1δx, b

2
δx, b

3
δx, b

4
δx, b

5
δx]

T where each element of the bound-
ing term corresponds to each one of the line-of-sight constraints

P (ALOSx(t) ≤ bLOS) ≥ p −→ ALOSx̂(t) ≤ bLOS+bδx(t) ≤ ALOSx(t). (4.14)

The bounding term bδx has to be determined at each instant. In that sense,
it should be noted that the minimum probability p of constraints satisfaction
presents a tradeoff between infeasibility (if p is chosen the unity, the bounding
term would tighten too much the constraint) and mission safeness (p should
be close to the unity). Inserting Eq. (4.11) and Eq. (4.12) into Eq. (4.14) and
cancelling the respective deterministic terms yields

ALOS

j∑
i=0

ΦΦΦ(t, ti)δ̂δδxi ≤ bδx(t) ≤ ALOS

j∑
i=0

ΦΦΦ(t, ti)δδδxi, tj ≤ t < tj+1. (4.15)

Since the disturbance term was assumed as a Gaussian distribution, the fol-
lowing statistical property holds (see [Rencher98] for the details)

δδδx ∼ N6(δ̂δδx,ΣΣΣδδδx) −→ (δδδx− δ̂δδx)TΣΣΣ−1
δδδx (δδδx− δ̂δδx) ∼ χ2(6), (4.16)
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where the time dependencies has been ommited for the sake of clarity. The term
χ2(6) denotes a chi-square probability distribution function with six-degrees of
freedom. Assuming that the disturbances statistical properties are constant
during the whole rendezvous operation (quasi-steady hypothesis), then

δδδxj ∼ N6(δ̂δδx,ΣΣΣδδδx), δ̂δδx ≡ constant, ΣΣΣδδδx ≡ constant, (4.17)

where δδδxj = δδδx(tj). Consequently, Eq. (4.16) remains invariant over time

(δδδxj − δ̂δδx)TΣΣΣ−1
δδδx (δδδxj − δ̂δδx) ∼ χ2(6), j = 0 . . . N, (4.18)

hence the following probabilistic relation also holds

P (χ2(6) ≤ α) = p −→ P [(δδδxj − δ̂δδx)TΣΣΣ−1
δδδx (δδδxj − δ̂δδx) ≤ α] = p. (4.19)

The upper bound α has to be found from a given probability p (see Fig. 4.2).

0 5 10 15 20

0

0.05

0.1

0.15

Figure 4.2: Probability density function of the chi-square distribution
with six-degrees of freedom.

While fulfilling Eq. (4.19), each element of the bounding term bδx is max-
imized as (to increase the feasibility of the problem, the bound should be the
least restrictive as possible)

maximize
δδδx(ti)

bsδx(t) =

j∑
i=0

gs
LOS(t)(δδδxi − δ̂δδx), s = 1 . . . 5,

subject to (δδδxi − δ̂δδx)T (αΣΣΣδδδx)
−1(δδδxi − δ̂δδx) ≤ 1, i = 0 . . . j,

(4.20)
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where gs
LOS, s = 1 . . . 5, refers to each row of the matrix ALOS

∑j
i=0ΦΦΦ(t, ti) as

ALOS

j∑
i=0

ΦΦΦ(t, ti) =


g1
LOS(t)

g2
LOS(t)

g3
LOS(t)

g4
LOS(t)

g5
LOS(t)

 . (4.21)

By using the following change of variable

zi = H1/2(δδδxi − δ̂δδx), H = (αΣΣΣδδδx)
−1 ≻ 0, (4.22)

the problem (4.20) is transformed as

maximize
zi

bsδx(t) =

j∑
i=0

gs
LOS(t)H

−1/2zi, s = 1 . . . 5,

subject to zTi zi ≤ 1, i = 1 . . . j,

(4.23)

where each term of the summation is independent from each other, thus the
bounding term computation can be decoupled for each disturbance as

miminize
zi

− gs
LOS(t)H

−1/2zi,

subject to zTi zi ≤ 1,
(4.24)

where the optimal decision variable can be easily obtained via the Lagrange
formalism, yielding the minimum at

z∗i =
H−1/2(gs

LOS(t))
T√

gs
LOS(t)H

−1(gs
LOS(t))

T
. (4.25)

Finally, by undoing the change of variable and substituting in the bounding
term expresion yields

bsδx(t) =

j∑
i=0

(
−
√

gs
LOS(t)αΣΣΣδδδx(g

s
LOS(t))

T − gs
LOS(t)δ̂δδx

)
. (4.26)

Then, the robust line-of-sight constraint is expressed deterministically as

ALOSx̂(t) ≤ bLOS + bδx(t). (4.27)

4.3.2 Quadratic programming description

Now, the continuous robust rendezvous planning problem (4.13) is reduced
into a static form by means of discretization and a B-splines parameterization
of the control acceleration. The result is a quadratic programming problem
guaranteeing probabilistic constraints satisfaction.
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Impulses placement

A predefined number of N +1 firing times for the impulsive thrusters has been
assumed. These control times are equally spaced in time as tj = t0+ j∆t, j =
0 . . . N with ∆t = (tf − t0)/N . As such, let denote ∆Vj = ∆V(tj).

B-splines parameterization of the continuous acceleration

The continuous acceleration control is parameterized in terms of B-splines (see
Appendix A) for the details, as

u(t) =

nc∑
i=1

Bi,q(t)ζζζi. (4.28)

Similar guidelines as in the MRP B-splines parameterization of Section 3.3.1
apply. The term q is the B-splines degree which has to fullfill q ≥ 2 in order
to support a smooth acceleration profile. Note that q = 0 corresponds to the
pulse amplitude modulation model. The number of control points is a free
parameter which is recommended to be chosen as nc ≥ N +1. Proceeding like
that would allow to make the basis functions of the B-splines coincident with
the intervals between impulses. Under the previous considerations, the number
of knots must satisfy nknots = nc + q ≥ N + q + 1 which can be enforced as

tknots = [ t0, . . . , t0︸ ︷︷ ︸
>q/2+1 times

, t1, . . . , tN−1, tf , . . . , tf︸ ︷︷ ︸
>q/2+1 times

]T . (4.29)

where the repetition of initial and final nodes does not alter the internal qth

order continuity of the control acceleration profile.

Discretization of continuous constraints

Subsequently, the continuous constraints of problem 4.13 are discretized with
respect to time.

Line-of-sight constraint: in a similar way as in Section 3.3.1, the proba-
bilistic line-of-sight constraint is only enforced at nLOS equally spaced times,
within an interval between impulses, separated by ∆tLOS = ∆t/nLOS

P (ALOSxj,l ≤ bLOS) ≥ p −→ ALOSx̂j,l ≤ bLOS + bδx(tj,l),

tj,l = t0 + (j − 1)∆t+ l∆tLOS, j = 1 . . . N, l = 1 . . . nLOS.
(4.30)

Note that the bounding term bδx(tj,l) has to be computed in accordance with
Eq. (4.26) at the constraints enforcement instants tj,l

bqδx(tj,l) =

j∑
i=0

(
−
√

gq
LOS(tj,l)αΣΣΣδδδx(g

q
LOS(tj,l))

T − gq
LOS(tj,l)δ̂δδx

)
. (4.31)
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Control acceleration bounds: since the control acceleration is parameterized
in a continuous way (different from a PAM model which assumes a constant
acceleration over an interval), its bounds constraints are continuous. To dis-
cretize this constraint, it is only enforced at nu equally spaced times, within
internal knots, separated by ∆tu = ∆t/nu

−u ≤
nc∑
i=1

Bi.q(tj,m)ζζζi ≤ u, tj,m = t0 + (j − 1)∆t+m∆tu,

j = 1 . . . N, m = 1 . . . nu.

(4.32)

Compact formulation

As in Section 3.3.1, a compact formulation is employed to ease the notation.
Let define the stack vectors xS ∈ R6nLOSN , ζζζS ∈ R3nc , ∆VS ∈ R3(N+1) and
δδδxS ∈ R3(N+1) as

xS = [xT
1,1, . . . ,x

T
1,nLOS

,xT
2,1, . . . ,x

T
2,nLOS

,xT
3,1, . . . . . . ,x

T
N,nLOS

]T ,

ζζζS =

 ζζζ1
...

ζζζnc

 , ∆VS =

∆V0
...

∆VN

 , δδδxS =

δδδx0
...

δδδxT
N

 .
(4.33)

Let also define the stack matrices F ∈ R6nLOSN×6, Gζ ∈ R6nLOSN×3nc , G∆V ∈
R6nLOSN×3(N+1) and Gδx ∈ R6nLOSN×6(N+1)

F =

[ΦΦΦT (t1,1, t0), . . . ,ΦΦΦ
T (t1,nLOS , t0),ΦΦΦ

T (t2,nLOS , t0), . . . . . . ,ΦΦΦ
T (tN,nLOS

, t0)]
T ,

Gζ =



Bζ1(t1,1) Bζ2(t1,1) . . . Bζnc
(t1,1)

...
...

. . .
...

Bζ1(t1,nLOS) Bζ2(t1,nLOS) . . . Bζnc
(t1,nLOS)

Bζ1(t2,1) Bζ2(t2,1) . . . Bζnc
(t2,1)

...
...

. . .
...

Bζ1(t2,nLOS) Bζ2(t2,nLOS) . . . Bζnc
(t2,nLOS)

Bζ1(t3,1) Bζ2(t3,1) . . . Bζnc
(t3,1)

...
...

. . .
...

...
...

. . .
...

Bζ1(tN,nLOS
) Bζ2(tN,nLOS

) . . . Bζnc
(tN,nLOS

)



, (4.34)
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G∆V =



ΦΦΦ(t1,1, t0)B 06×3 . . . 06×3
...

...
. . .

...
ΦΦΦ(t1,nLOS , t0)B 06×3 . . . 06×3

ΦΦΦ(t2,1, t0)B ΦΦΦ(t2,1, t1)B . . . 06×3
...

...
. . .

...
ΦΦΦ(t2,nLOS , t0)B ΦΦΦ(t2,nLOS , t1)B . . . 06×3

ΦΦΦ(t3,1, t0)B ΦΦΦ(t3,1, t1)B . . . 06×3
...

...
. . .

...
...

...
. . .

...
ΦΦΦ(tN,nLOS

, t0)B ΦΦΦ(tN,nLOS
, t1)B . . . B



, (4.35)

Gδx =



ΦΦΦ(t1,1, t0) 06×3 . . . 06×3
...

...
. . .

...
ΦΦΦ(t1,nLOS , t0) 06×3 . . . 06×3

ΦΦΦ(t2,1, t0) ΦΦΦ(t2,1, t1) . . . 06×3
...

...
. . .

...
ΦΦΦ(t2,nLOS , t0) ΦΦΦ(t2,nLOS , t1) . . . 06×3

ΦΦΦ(t3,1, t0) ΦΦΦ(t3,1, t1) . . . 06×3
...

...
. . .

...
...

...
. . .

...
ΦΦΦ(tN,nLOS

, t0) ΦΦΦ(tN,nLOS
, t1) . . . I



, (4.36)

where the term Bζ of Eq. (4.34) is defined as

Bζi(tj,l) =

∫ tj,l

t0

ΦΦΦ(tj,l, τ)BBi,q(τ)dτ, i = 1 . . . nc. (4.37)

Finally, by relating the stack vectors with the stack matrices (see Eq. (4.33)-
(4.36)), the relative state prediction can be expressed in a compact form

xS = Fx0 +GζζζζS +G∆V ∆VS +GδxδδδxS. (4.38)

The mean of Eq. (4.38) is

x̂S = Fx0 +GζζζζS +G∆V ∆VS +Gδxδ̂δδxS, (4.39)

where

x̂S = [x̂T
1,1, . . . , x̂

T
1,nLOS

, x̂T
2,1, . . . , x̂

T
2,nLOS

, x̂T
3,1, . . . . . . , x̂

T
N,nLOS

]T ,

δ̂δδxS = [δ̂δδx
T
, . . . , δ̂δδx

T

N ]T ,
(4.40)
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where the bias of the additive disturbance is invariant due to the quasi-steady
assumption.

The continuous acceleration, evaluated at the constraints enforcement in-
stants tj,m, can also be compactly expressed as

uS = KuζζζS, (4.41)

where the stack vector uS ∈ R3nuN is

uS = [uT
1,1, . . . ,u

T
1,nu

,uT
2,1, . . . ,u

T
2,nu

,uT
3,1, . . . . . . ,u

T
N,nu

]T , (4.42)

being uj,m = u(tj,m). The stack matrix Ku ∈ R3nuN×3nc is defined as

Ku =



B1,q(t1,1)I B2,q(t1,1)I . . . Bnc,q(t1,1)I
...

...
. . .

...
B1,q(t1,nu)I B2,q(t1,nu)I . . . Bnc,q(t1,nu)I
B1,q(t2,1)I B2,q(t2,1)I . . . Bnc,q(t2,1)I

...
...

. . .
...

B1,q(t2,nu)I B2,q(t2,nu)I . . . Bnc,q(t2,nu)I
B1,q(t3,1)I B2,q(t3,1)I . . . Bnc,q(t3,1)I

...
...

. . .
...

...
...

. . .
...

B1,q(tN,nu)I B2,q(tN,nu)I . . . Bnc,q(tN,nu)I



. (4.43)

Robust static program

By joining the discretization of the continuous constraints discretization with
the compact formulation, the following quadratic program is derived

minimize
∆VS, ζζζS

∆VS
T∆VS + γζζζζ

T
SζζζS,

subject to x̂S = Fx0 +GζζζζS +G∆V ∆VS +Gδxδ̂δδxS,

AS,LOSx̂S ≤ bS,LOS + bS,δx,

−∆VS ≤ ∆VS ≤ ∆VS,

− uS ≤ uS ≤ uS,

uS = KuζζζS,

u(t0, ζζζS) = 0, u̇(t0, ζζζS) = 0, ü(t0, ζζζS) = 0,

bS,δx ≡ bS,δx(δ̂δδx,ΣΣΣδδδx, α),

δ̂δδx ≡ constant, ΣΣΣδδδx ≡ constant.

(4.44)

The stack matrix AS,LOS and vector bS,LOS for the line-of-sight constraints
have the same expression of Eq. (3.28). The matrix Axf

extracts the final
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state as in Eq. (3.30). The continuous acceleration profile considers the initial
transient phase of the thrusters which is the reason why the initial control
acceleration and its derivatives (up to second order) are nullified. The term
bS,δx ∈ R5nLOSN stacks the bounding terms guaranteeing the probabilistic
satisfaction of the line-of-sight constraints as

bS,δx = [bT
δx(t1,1), . . .b

T
δx(t1,nLOS),b

T
δx(t2,1), . . . . . . ,b

T
δx(tN,nLOS

)]T . (4.45)

Let recall that the bounding term explicitly depends on the probabilistic pa-
rameter α which is not the same as the constraints satisfaction probability
p. In order to ensure a satisfaction equal or above a probability p, the cor-
responding parameter α has to be derived according to Eq. (4.19). It is also
assumed that the disturbances mean and covariance are known. Finally, the im-
pulse amplitude and continuous accelerations bounds has been stacked through
∆VS ∈ R3(N+1) uS ∈ R3nuN as follows

∆VS =

∆V
...

∆V

 , uS =

u...
u

 . (4.46)

4.4 Robust MPC scheme with disturbance estima-
tion

In this section, the robust closed-loop model predictive scheme is presented.
Firstly, the robust control program (4.44) is embedded within an MPC form.
Then, an on-line disturbance estimator, with the ability of inferring the distur-
bance statistical properties along the operation, is stated. Finally, the complete
MPC algorithm with disturbance estimation is shown as pseudocode.

4.4.1 Robust control program

The robust quadratic programming 4.44 is suitable to be embedded within an
MPC scheme. Let recall that very efficient QP solvers, from the computational
perspective, are available nowadays. However, as in Section 3.4.2, it is rec-
ommended to relax the terminal equality constraints to penalty costs in the
objective function. This would prevent infeasibilities as the time horizon is
slided forward, thus the equality constraint would have to be repeated over a
finite interval. By taking this into account, for an MPC step k = 0 . . . N − 1,
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the robust control program is given by

minimize
∆VS(k), ζζζS(k)

(∆VS(k))
T∆VS(k) + γζ(ζζζS(k))

TζζζS(k)

+ (x̂S(k)− xSf )
TQSxf

(k)(x̂S(k)− xSf ),

k = 1 . . . N − 1,

subject to x̂S(k) = Fxk +GζζζζS +G∆V ∆VS +Gδxδ̂δδxS,

AS,LOSx̂S(k) ≤ bS,LOS + bS,δx(k),

−∆VS ≤ ∆VS(k) ≤ ∆VS,

− uS ≤ uS(k) ≤ uS,

uS(k) = Ku(k)ζζζS(k),

ũk = u(tk, ζζζS(k)),

˙̃uk = u̇(tk, ζζζS(k)),

¨̃uk = ü(tk, ζζζS(k)),

bS,δx(k) ≡ bS,δx(δ̂δδxk,ΣΣΣδδδxk
, α),

δ̂δδxk ≡ constant, ΣΣΣδδδxk
≡ constant,

(4.47)

where, for the sake of clarity, the dependencies with the current MPC step k
have been omitted at the right-hand side of the compact propagation equa-
tion. The terminal cost matrix QSxf

and vector xSf have the same structure
as Eq. (3.47). These are modulated by terminal weights {γρ, γρ̇} ≥ 0. Conse-
quently, the sliding MPC does not only consider reaching the terminal relative
state but also to remain on its proximity. The final control acceleration and
its derivatives are denoted, of the previous interval k − 1, are denoted by ũk,
˙̃uk and ¨̃uk. The control acceleration profile, for the MPC step k, has to begin
from these conditions in order to maintain its continuity.

4.4.2 On-line disturbance estimator

The robust control program (4.47) requires the disturbance statistical proper-

ties, its mean δ̂δδxk and covariance ΣΣΣδδδxk
, in order to compute a robust control

sequence. However, these variables are usually inaccurate or unknown a-priori
and have to be estimated. In this work, following [Gavilan12], an on-line dis-
turbance estimator is considered. Let first compute the disturbance at the
current MPC step k. The disturbance is the mismatch between the current
value x̃k and the prediction (without the disturbance term)

δδδxk =x̃k −ΦΦΦ(tk, tk−1)xk−1 −
∫ tk

tk−1

ΦΦΦ(tk, τ)B

nc∑
i=1

Bi,q(τ)ξξξidτ

−ΦΦΦ(tk, tk−1)B∆Vk−1.

(4.48)
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Using past disturbances up to the current MPC step k, the disturbance bias
and covariance can be estimated as

δ̂δδxk =

k∑
i=1

e−λ(k−i)δδδxi

k∑
i=1

e−λ(k−i)

,

ΣΣΣδδδxk
=

k∑
i=1

e−λ(k−i)(δδδxi − δ̂δδxk)(δδδxi − δ̂δδxk)
T

k∑
i=1

e−λ(k−i)

,

(4.49)

where λ ≥ 0 is a forgetting factor giving more weight to the recent disturbances.
This may help to account for the case where the disturbance statistical proper-
ties are time-varying. However, the past disturbances have to be stored which
may be an issue if the available memory on-board is scarce. In order to mitigate
this issue, following [Gavilan12], alternative recursive formulas will substitute
Eq. (4.49). Let define the following variable κk

κk =

k∑
i=1

e−λ(k−i) =
e−λ(1− e−λk)

1− e−λ
. (4.50)

Note that the summation has been simplified by the sum of a geometric pro-
gression. The previous term can be employed to define the following recursive
formulas

δ̂δδxk =
e−λ

κk
(κk−1δ̂δδxk−1 + δδδxk),

ΣΣΣδδδxk
=

e−λ

κk

[
κk−1ΣΣΣδδδxk−1

+ (δδδxk − δ̂δδxk)(δδδxk − δ̂δδxk)
T
]
,

(4.51)

which have to be initialized with the initial knowledge of the disturbances
statistical properties δ̂δδx0 and ΣΣΣδδδx0

. Note that by using Eq. (4.49), only the
last mean and covariance estimates have to be stored in memory.

4.4.3 Robust MPC scheme

The complete robust MPC scheme for RTBP spacecraft rendezvous is shown as
pseudocode in Algorithm 2. The initial steps 2-3 precompute by integration the
transition matrices and contribution of the B-splines based continuous control
acceleration. On the contrary to Keplerian motion, the RTBP relative models
have to be numerically integrated according to (2.51). Then, with the initial
knowledge of the disturbances statistical properties, the line-of-sight constraint
bounding terms are computed in step 5. If the disturbances statistical prop-
erties are unknown, that is δ̂δδx0 = 0 and ΣΣΣδδδx0

= 06×6, the bounding term will
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Algorithm 2: Robust MPC scheme with disturbance estimation

1 begin
2 Integrate Eq. (2.51) to precompute the state transition matrices

ΦΦΦ(tj+k,l, tk), k = 0 . . . N − 1;
3 Integrate Eq. (4.37) to precompute Bζi(tj+k,l), k = 0 . . . N − 1;

4 Initialize the disturbances statistical properties δ̂δδx0 and ΣΣΣδδδx0
;

5 Compute the bounding terms bδx(tj,l) through Eq. (4.26);
6 Obtain a solution of the QP problem (4.44), ∆VS and ζζζS;
7 Apply ∆V(t0) and u(t) for t ∈ [t0, t1);
8 Initialize the MPC step k = 1;
9 while k < N do

10 Compute the actual disturbance δδδxk according to Eq. (4.48);

11 Update the disturbance statistical properties δ̂δδxk and ΣΣΣδδδxk

through Eq. (4.51);
12 Update the bounding terms bS,δx(k) through Eq. (4.26);
13 Obtain the solution of the QP problem (4.47), ∆VS(k) and

ζζζS(k);
14 Apply ∆V(tk) and u(t) for t ∈ [tk, tk+1);
15 Update the MPC step, k ← k + 1;

16 end
17 Apply the final braking impulse ∆V(tN );

18 end
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be null in the initialization. Using the previous inputs, an initial open-loop
plan is computed in step 6. This plan is executed by the application of the
first impulse action and continuous control acceleration during the first MPC
interval.

Subsequently, the closed-loop MPC controller takes on until the end of the
rendezvous operation. After each MPC step, the relative state disturbance is
computed in step 10. This serves to update the disturbance statistical prop-
erties as per step 11. With this new statistical properties, the line-of-sight
constraint bounding term is computed in step 12. Then, the robust control
plan is updated by solving the associated QP problem in step 13. The first
impulse and continuous acceleration for the first interval of this new plan are
applied and the process is repeated until the end of the maneuver. At the
instant tf = tN , the final braking impulse is applied (see step 17). A further
station-keeping phase around the final relative position is out of the scope of
this work.

4.5 Numerical results

The main contribution of the proposed robust controller for RTBP rendezvous
is its capability to explicitly account for disturbances, thus assuring constraints
satisfaction in a probabilistic sense. To test the previous feature, the numerical
results are mainly devoted to compare the proposed robust controller with
respect to a non-robust one. The non-robust controller can be easily recover
from the employed formulation by assuming there are no disturbances, thus
δ̂δδx = 0 and ΣΣΣδδδx = 06×6 (which also implies bS,δx = 0) in the program (4.47).

The studied scenario consists in a rendezvous operation with a target placed
in an Earth-Moon near-rectilinear halo orbit. Two distinct configurations of
the chaser propulsive plant have been considered. The first one corresponds to
a vehicle equipped with only impulsive thrusters while for the second one only
continuous acceleration thrusters are available. The reason to separate both
cases (though the employed formulation allows to consider both) is that only
a specific type of actuator is usually employed for the same mission phase.

The simulations have been carried out in a MATLAB environment using
Gurobi optimization package [Gurobi14] as the QP solver. The MATLAB
routine ode45 was used for the computation of the state transition matrices
and the contribution of the continuous acceleration. This function implements
a 4th order Runge-Kutta numerical integration method with an adaptive time
step.

4.5.1 Simulation model and controller parameters

Next, the simulation model and controller parameters are detailed. In order
to justify the chosen scenario, an analysis of the rendezvous maneuver with
respect to the target position is carried out.
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Simulation model

The simulation model assumes a passive target placed in an Earth-Moon pe-
riodic orbit. The non-linear restricted three-body problem relative dynamics
of Eq. (2.50), without orbital perturbations but with control disturbances as
Eq. (2.68)-(2.70), are considered

ρ̈ρρ(t) =− ω̇ωωL/I × ρρρ− 2ωωωL/I × ρ̇ρρ−ωωωL/I × (ωωωL/I × ρρρ)− µ1(r1t + ρρρ)

∥r1t + ρρρ∥32
− µ2(r2t + ρρρ)

∥r2t + ρρρ∥32
+

µ1r1t
r31t

+
µ2r2t
r32t

+∆R(δδδθθθ)[(1 + ϵu)u(t) + δδδu],

ρ̇ρρ+(tk) =ρ̇ρρ(tk) + ∆R(δδδθθθ)[(1 + ϵ∆V )∆V(tk) + δδδV],

r̈t(t) =−
µ1r1t
r31t

− µ2r2t
r32t

.

The main bodies standard gravitational parameters correspond to the Earth
µ1 = 398600.4 km3/s2 and the Moon µ2 = 4904.869 km3/s2 respectively. The
Earth-Moon distance varies between a minimum of 363104 km and a maximum
of 405696 km. Note that rit(t) = rt(t) − ri(t) (i = 1, 2) is the target relative
position with respect to each one of the primaries. The dependency with time
has been omitted at the right-hand side of the chaser and target dynamics.

The target is placed in an Earth-Moon southern L2 NRHO characterized
by Table 4.1. The chosen NRHO has an orbital period in a 4:1 resonance with
respect to the Moon synodic period (29.5 days). In order to understand these
parameters, the reader is referred to Appendix B (see Fig. B.2-B.3) for the
details about NRHOs in the Earth-Moon system. The simulation model uses a

Stability index Orbital period Perilune altitude Apolune altitude

1.625 7.375 days 3996.7 km 74103 km

Table 4.1: Parameters of the target NRHO.

non-linear dynamics model (see Eq. (2.25)) for the relative motion. The target
evolves as per the RTBP model which may deviate its orbit computed under the
CRTBP. Let recall that the primaries distance forms an ellipse which causes
r1 ≡ r1(t) and r2 ≡ r2(t). However, the robustness of the NRHOs against
perturbations guarantees that the deviations are weak enough for the duration
of the rendezvous operation.

The main perturbation comes from the thrusters control. The mishaps are
assumed to be produced by an imperfect alignment of the array and an additive
disturbance to the thrust level. The statistical properties of the mishaps are
shown in Tables 4.2-4.3 for the impulsive and continuous acceleration thrusters
respectively. The term U3(−w,w), indicates a multivariate uniform distribu-
tion (of dimension three) in the interval [−w,w] for each variable. The bias



4.5 Numerical results 113

of the additive disturbance is randomly varied for each simulation in order to
assess its impact.

Variable Bias Covariance

Misalignment δθδθδθ [2.5◦, 2.5◦, 2.5◦]T (2.5◦)2I
Multiplicative ϵ∆V 0 0

Additive δδδV U3(−0.17, 0.17) mm/s (0.5)2I (mm/s)2

Table 4.2: Statistical properties of impulses mishaps.

Variable Bias Covariance

Misalignment δθδθδθ [2.5◦, 2.5◦, 2.5◦]T (2.5◦)2I
Multiplicative ϵu 0 0

Additive δδδu U3(−0.17, 0.17) µmm/s2 (0.5)2I (µmm/s2)2

Table 4.3: Statistical properties of the continuous acceleration
mishaps.

Controller parameters

For all the simulations, the target is initially placed at the NRHO perilune.
This assumption will be justified below. The rendezvous maneuver duration
is chosen as 6 h which consumes a 3.4% of the target orbital period. The
LOS parameters are chosen as cy = cz = 1/ tan (π/6) and y0 = z0 = 5 m.
This corresponds to a 30◦ half-angle of a cone departing from the docking port
along the +x direction.

For the sake of generality, the robust MPC tuning parameters are chosen
equally for all the simulations. These are: the number of sampling intervals
N ; the weights γρ and γρ̇ for the terminal relative position and velocity; the
constraints satisfaction probability p; the forgetting factor λ for the on-line
disturbance estimator.

The number of sampling intervals is chosen as N = 40. This turns out to
place 41 impulses along the maneuver for the impulsive scenario. The weights
for the terminal relative position and velocity are chosen as γρ = 106 and
γρ̇ = 0. Since the MPC control horizon is slided forward by adding a new
cost to the terminal condition each time, targeting a null relative velocity
will be indirectly enforced by the terminal costs in the relative position. The
probability threshold of constraints satisfaction is chosen to be equal or above
a 95% which implies α = 12.6 as per the chi-square distribution with six-
degrees of freedom (see Eq. (4.19)). Finally, the forgetting factor for the on-line
disturbance estimator is taken as λ = 0.25.
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Rendezvous analysis around the NRHO

Doing the rendezvous maneuver in the vicinity of the perilune is the most
challenging case. To demonstrate that, for the controller parameters and 4:1
resonant NRHO, a parametric analysis depending on the initial target position
has been carried out. This analysis uses the impulsive model and no mismatch
between the prediction and the simulation model is assumed (both linear). Let
also assume a V-bar alike approach such that ρρρ0 = [500, 0, 0]T m and ρ̇ρρ0 =
0 m/s. The maneuver duration is 6 h and the control sequence is formed by 41
open-loop impulse. Figure 4.3 shows the projection of the relative trajectories
in the xz plane. It can be seen that the maneuvers taking place in the target
apolune region are straight lines while the ones in the vicinity of the perilune
are curved. This suggests that the natural relative motion in the vicinity of
the perilune is much faster, thus being more difficult to satisfy line-of-sight
constraints in a perturbed scenario. Figure 4.4 shows the total ∆V for the
rendezvous maneuver. It can be observed that the consumption when the
rendezvous takes place in the vicinity of the perilune doubles the one for the
apolune.

-400 -300 -200 -100 0 100 200 300 400

0

200

400

600

Figure 4.3: Projection of the chaser relative trajectories in the xz
plane for different initial NRHO locations.

4.5.2 Impulsive thrusters scenario

Although the developed strategy allows to consider both impulsive and con-
tinuous thrusters, these are considered separately in the simulation scenario.
The main reason behind the previous consideration is that, in practice, only
one of these devices is used for proximity operations. To this end, the im-
pulsive scenario is considered by forcing u = 0. The impulse amplitude is
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Figure 4.4: Total ∆V for different initial target locations around the
NRHO.

bounded by ∆V = [10, 10, 10]T cm/s. The chaser is assumed to depart from
ρρρ0 = [400, 200, 200] m with ρ̇ρρ0 = [10, 0, 10] cm/s. To compare the robust con-
troller with respect to a non-robust one, 100 simulations, that also varies the
impulsive bias δ̂δδV (see Table 4.2) are carried out.

Robust MPC

The robust controller (see Algorithm 2) results are shown in Fig. 4.5-4.8. For
the sake of clarity, the trajectory is also projected into the xz plane because it
depicts the most conflictive situations arising with the LOS constraints. Fig-
ures 4.5-4.6 show that the LOS constraints are satisfied for all the random
realizations and the chaser ends in the vicinity of the target. The first con-
flictive situation arises early with the plane x ≥ cz(z − z0). Nonetheless, the
constraint is respected even if the disturbances statistical properties are poorly
known at this stage. The latter one arises at the end of the maneuver where it
can be seen that the trajectories brake in advance to avoid trespassing x ≥ 0.
This can be noticed in Fig. 4.7 where the in-track impulses of the last hour are
devoted to brake. The relative velocity disturbance mean and 1-sigma uncer-
tainty estimation is shown in Fig. 4.8. The results correspond to the order of
magnitude of the impulse mishap (∼ 1 mm/s).

Comparison with non-robust MPC

The non-robust controller skips the disturbance estimation step 11 of Algo-
rithm 2. Then, δδδx̂xxk = 0 and ΣΣΣδx,k = 06×6 for k = 0 . . . N , thus the disturbances
are not accounted for in the formulation. In order to compare with Figure 4.6
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Figure 4.5: Chaser relative trajectories of the robust MPC for the
impulsive scenario.

Figure 4.6: Projection of the chaser relative trajectories in the xz
plane of the robust MPC for the impulsive scenario.
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Figure 4.7: Impulse sequence for the first random realization of the
robust MPC for the impulsive scenario.

of the robust controller, Figure 4.9 shows the non-robust controller trajectories
in the plane xz. It can be observed that some random realizations trespass the
LOS region near the departure. Additionally, the final relative position violate
the inequality x ≥ 0 for some random realizations at the final instants of the
maneuver (which is a potential collision risk with the target).

Quantitatively, the robust and non-robust controllers results are shown in
Fig. 4.10. The LOS satisfaction and total ∆V (

∑N
k=0∥∆Vk∥1) are represented

with respect to the additive impulse mishap bias. It can be observed that
the robust controller has satisfied the LOS satisfaction in the 100% of the
simulations while the non-robust controller only satisfies constraints for a 5%
of the cases. In order to guarantee the LOS satisfaction by counteracting the
disturbances, the robust controller requires an average of 0.4745 m/s while
the non-robust control spends 0.4312 m/s. The fuel consumption demands are
typically increased by a 10% by the robust controller.

The computational times for the state transition matrix, robust control
and non-robust control computations are shown in Table 4.4. The most time-
consuming task is the numerical integration of the state transition matrices.
However, this step can be precomputed before the maneuver start. The robust
MPC and non-robust MPC have similar computational times though the non-
robust strategy is slightly faster as expected. The time-consumed percentage
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Figure 4.8: Disturbance estimation for the first random realization of
the robust MPC for the impulsive scenario.

Figure 4.9: Projection of the chaser relative trajectories in the xz
plane of the non-robust MPC for the impulsive scenario.
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Figure 4.10: Total ∆V and constraints satisfaction of robust and non-
robust MPC for the impulsive scenario.

of the sampling interval (9 min) in the computations (< 0.2%) highlights the
potential applicability of the proposed robust MPC in an autonomous system.

Mean 1-sigma Max.

STM comp.1 1.3659 s / 0.25% 0.0777 s / 0.01% 1.5408 s / 0.29%
R-MPC2 0.2631 s / 0.05% 0.0508 s / 0.01% 0.7984 s / 0.15%
NR-MPC3 0.2467 s / 0.05% 0.2150 s / 0.04% 0.7431 s / 0.14%

Table 4.4: Computational time and its percentage over the sampling
interval for the impulsive scenario

4.5.3 Continuous thrusters scenario

Now, let consider the scenario for the continuous thrusters. In that sense,
the continuous acceleration profile is characterized by the following B-splines
parameters: q = 4, nc = 44, and the knots sequence

tknots = [tk, tk, tk, tk, tk, tk+1 . . . , tk+N−1, tk+N , tk+N , tk+N , tk+N , tk+N ]T .

1STM comp. ≡ computation of the state transition matrices by numerical integration.
2R-MPC ≡ robust model predictive control.
3NR-MPC ≡ non-robust model predictive control.
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Therefore, the acceleration profile u(t) has C4 continuity in time. The control
impulses are precluded by forcing ∆∆∆V = 0. The maximum continuous accel-
eration is assumed as u = [100, 100, 100]T µm/s2. In this scenario, the chaser
departs from ρρρ0 = [600, 300,−200] m with a velocity of ρ̇ρρ0 = [−10,−10, 0] cm/s.
Again, to compare the robust controller with respect to a non-robust one, 100
simulations, randomly varying the continuous thrust bias as per Table 4.3 are
carried out.

Robust MPC

The robust controller (see Algorithm 2) results are shown in Fig. 4.11-4.14.
Again, the trajectory is projected into the xz plane as it depicts the situations
with a potential to violate the LOS constraints. One of the conflicts arises at
the midterm of the maneuver while the other one happens in the vicinity of
the target. In this scenario, some random realizations fail to satisfy the LOS
constraints for these conflicts. Specifically, 80% of the random realizations
satisfied the LOS constraints which is below the probability satisfaction level
of a 95%. The potential cause of that underperformance is that the additive
disturbances assumption (see Eq. (4.11)) models the continuous acceleration
mishap in a very simplified way (the exertion of a continuous mishap is not
considered). The final instants braking in the in-track direction can be seen in
Fig. 4.13 for the first random realization. The bias on the continuous acceler-
ation is also noticeable. Finally, the disturbance statistical properties (for the
velocity) estimation for the first random realization is shown in Fig. 4.14. The
order of magnitude of the estimation coincides with the expected cumulative
effect of ∼ 0.17 µm/s2 · 9 min ≈ 5 mm/s over the sampling interval.

Figure 4.11: Chaser relative trajectories of the robust MPC for the
continuous thrusters scenario.
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Figure 4.12: Projection of the chaser relative trajectories in the xz
plane of the robust MPC for the continuous thrusters scenario.
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Figure 4.13: Control acceleration evolution for the first random real-
ization of the robust MPC for the continuous thrusters scenario.
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Figure 4.14: Disturbance estimation for the first random realization
of the robust MPC for the continuous thrusters scenario.

Comparison with non-robust MPC

Now, let compare the robust MPC with the non-robust MPC. The non-robust
MPC trajectories, for all the random realizations, are shown in Fig. 4.15. It
can be observed that the majority of the trajectories violate the LOS con-
straints with even some of them failing to reach the vicinity of the target. The
main reason to this behaviour is that the non-robust MPC control program be-
comes infeasible after a LOS trespassing without the possibility to recompute
a feasible rendezvous maneuver from that point.

The comparison between both controllers is shown in Fig. 4.16 where both
the LOS constraints satisfaction and cost, in terms of the computed control
effort

∫ tf
t0

uT (t)u(t)dt/(tf − t0), are presented with respect to the continuous
thrust bias. It can be noticed that the robust MPC LOS violations occur
for values of ∥δδδu∥1 > 2.2 µm/s2, which highlights the important effect of
the disturbance bias.. The robust MPC not also achieves a LOS constraints
satisfaction level of a 80%, compared to the 7% of the non-robust MPC, but
also presents a lower cost. Specifically, the mean cost of the robust MPC is
0.0779 m2/s4 against the mean cost of 0.2421 m2/s4 for the non-robust MPC.

The computational times for the state transition matrix, robust control and
non-robust control computations are shown in Table 4.5. In this case, the nu-
merical integration of the state transition matrices and the continuous control
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action is three times slower than for the impulsive scenario (see Table 4.4). The
robust MPC and non-robust MPC have similar computational times though
the non-robust strategy is slightly faster as expected. They are also an order
of magnitude higher than the impulsive scenario. Still, the time-consumed
percentage of the sampling interval (9 min) in the computations (< 0.5%) is
moderate enough.

Figure 4.15: Projection of the chaser relative trajectories in the xz
plane of the non-robust MPC for the continuous thrusters scenario.

Mean 1-sigma Max.

STM comp.4 3.2649 s / 0.61% 0.3214 s / 0.06% 4.1210 s / 0.76%
R-MPC5 1.1726 s / 0.22% 0.1117 s / 0.02% 2.3129 s / 0.43%
NR-MPC6 1.1051 s / 0.21% 0.1083 s / 0.02% 2.4773 s / 0.46%

Table 4.5: Computational time and its percentage over the sampling
interval for the continuous thrusters scenario.

4STM comp. ≡ computation of the state transition matrices by numerical integration.
5R-MPC ≡ robust model predictive control.
6NR-MPC ≡ non-robust model predictive control.
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Figure 4.16: Control effort and constraints satisfaction of robust and
non-robust MPC for the impulsive scenario.



Chapter 5

Event-based impulsive control
for spacecraft rendezvous
hovering phases

The supreme art of war is to
subdue the enemy without
fighting.

Sun Tzu, The Art of War
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This chapter presents an event-based predictive controller for spacecraft
rendezvous hovering phases. The hovering phase aims to maintain the relative
position, between a leader (target) and follower (chaser), within a bounded
region (see Fig. 1.3). The leader is assumed to be in a known Keplerian orbit
and has a passive role (it does not change its orbit). The follower control
action is impulsive which models with adequate accuracy chemical or cold gas
thrusters. Both vehicles are in close proximity such that the relative distance
is negligible with respect to the semi-major axis ∥ρρρ∥2/a ≪ 1. The previous
hypothesis allows to use the linear relative dynamics of Eq. (2.31). The main
results of this chapter have been presented in the journal article [Sanchez21a]
and the conference proceeding [Sanchez19].

A natural way to maintain a follower orbiting in the vicinity of a leader is
to employ a relative periodic orbit. These orbits can be conveniently described
by the vector of relative parameters (see Eq. (2.40)). In addition, the orbit
can be enforced to lie within a specific spatial region (namely a constrained
periodic relative orbit). Employing the previous concept, the control goal of the
hovering phase can be reduced to maintain the follower in the set of constrained
periodic relative orbits within the hovering region. An algebraic description of
the set of constrained periodic relative orbits was presented in [Arantes-Gilz17].

The main motivation of this chapter is to address some drawbacks of the
global stable controller, for spacecraft rendezvous hovering phases, proposed
in [Arantes-Gilz19]. The previous work demonstrated that a three-impulse se-
quence suffices to stabilize the relative state to the set of constrained periodic
relative orbits (admissible set). By using the previous control sequence re-
peatedly, the distance to the admissible set diminishes until the relative state
enters it. The global, though under close proximity assumptions, stable prop-
erty is especially convenient when the follower relative position is far away from
the hovering region (approach phase). However, several flaws arose when the
phase switches to maintain the relative state within the admissible set (hov-
ering phase). These are: the unnecessary computation of a high number of
impulses; the computation of tiny impulses below the minimum impulse bit;
no guarantee that the follower is within the hovering region when the three-
impulse sequence is executed.

To overcome the previous issues, a local control strategy is developed. For
this purpose, the event-based control paradigm [Aström08] is employed. Then,
a control is only computed when an event is detected. The event detection
process relies on predefined trigger rules associating a proper control response
to each possible event. Consequently, the set of trigger rules is the keystone
of an event-based controller and must cover every possible situation in order
to not let the system drift to an unrecoverable mode. The rationale behind
an event-based controller is to reduce the communication frequencies between
sensors, on-board computer and actuators.

The developed event-based controller, for spacecraft rendezvous hovering
phases, uses a single-impulse control law with the global stable controller (see
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Appendix D) as a backup to ensure stability. The trigger rules are designed
after a thorough analysis of the admissible set instantaneous reachability with
a single-impulse. The outcome of this analysis is the definition of proximity
metrics to the admissible set and the existence of a region of attraction. The
proximity metrics quantify the distance to the admissible set in terms of the
state reachability with a single-impulse. The region of attraction exploits the
system periodicity to determine the states from where an instantaneous reach-
ability window opens within the target orbital period. These concepts provide
useful information on when a single-impulse should be triggered.

The resulting event-based impulsive controller can be seen as an equiv-
alent hybrid impulsive system. This allows to assess the well-posedness and
invariance of the prioritized single-impulse control. The event-based and global
stable controllers are compared in terms of numerical simulations for a wide
range of leader orbits. The results confirms the event-based controller superi-
ority in terms of control accuracy and computational efficiency, with respect
to the global stable controller, without noticeable drawbacks.

5.1 Hovering phase control problem

Generally, the hovering phase consists in maintaining the follower relative posi-
tion, ρρρ, within a hovering region (state subset) described as a convex polytope
Xhov. Assuming three-axis impulsive control and Keplerian-based motion in
proximity, which allows to employ Eq. (2.24) linear relative dynamics, the hov-
ering control problem yields

minimize
tj ,∆V(tj)

J(∆V(tj)),

subject to ρ̈ρρ(t) = −2ωωωL/I × ρ̇ρρ− ω̇ωωL/I × ρρρ−ωωωL/I × (ωωωL/I × ρρρ)

−
(
µ/r3t

) [
I− 3rtr

T
t /r

2
t

]
ρρρ,

ρ̇ρρ+(tj) = ρ̇ρρ(tj) + ∆V(tj),

ρρρ(t) ∈ Xhov, t ∈ [t0, tf ],

ρρρ(t0) = ρρρ0 ∈ Xhov,

∥∆V(tj)∥2 ∈ [−∆V ,−∆V ] ∪ 0 ∪ [∆V ,∆V ].

(5.1)

Typically, the hovering phase duration is much greater than the leader orbital
period tf − t0 ≫ T . This phase is initiated when the hovering region Xhov is
reached. The previous facts suggest the possibility to treat the impulse appli-
cation times as a free variable. Maintaining the spacecraft hovering typically
induces the computation of a tiny impulse (as the position change over time
is limited to the hovering region size), thus the thruster minimum impulse bit
∆V is taken into account.
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5.2 Constrained periodic relative orbits

The most fuel efficient way to hover a given region, Xhov as per problem 5.1,
is to insert the follower into a natural constrained periodic relative orbit. This
orbit assures the satisfaction of the hovering region polytopic constraints with-
out need of control. Since there could be multiple relative orbits, within the
hovering region, the admissible set SD is defined as

SD := {ρρρ ∈ R6 | ρρρ(t) = ρρρ(t+ kT ) ∈ Xhov, k ∈ N, t ∈ [0, T ]}, (5.2)

where any constrained relative periodic orbit is admissible. Note that the
relative orbit period follows a 1:1 relation with the leader orbit period T (this is
due to the Keplerian-based relative motion periodicity as given by Eq. (2.39)).

The hovering region is usually described as a cuboid, in order to reduce the
problem dimension without loss of generality, defined by its limits {x, x, y, y, z, z}
and centered in [x+ x, y + y, z + z]T /2. Under the previous consideration, the
membership of the relative position to the hovering region is described by six
linear inequalities

ρρρ(t) ∈ Xhov ≡


x ≤ x(t) ≤ x,

y ≤ y(t) ≤ y,

z ≤ z(t) ≤ z.

(5.3)

For illustrative purposes, Fig. 5.1 shows several constrained relative periodic
orbits within a cuboid.
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Figure 5.1: Examples of constrained periodic relative orbits.

Using the vector of parameters d = [d0, d1, d2, d3, d4, d5]
T (see Eq. (2.40))

and changing the independent variable from time t to true anomaly ν the ad-
missible set in Eq. (5.2) can be explicitly described in the vector of parameters
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space as

SD :=d ∈ R6

∣∣∣∣
xy
z

 ≤ 1

ρν

W1(ν)d(ν)
W2(ν)d(ν)
W3(ν)d(ν)

 ≤
xy
z

 , d0 = 0, ∀ν ≥ ν0

 ,
(5.4)

where Wi, i = 1, 2, 3, are the first three rows of the transformation matrix W
from the relative state to the vector of parameters (see Eq. (2.41)). The nec-
essary and sufficient periodicity condition d0 = 0 was deduced in [Deaconu13].
Note that the non-periodic terms, in the Keplerian-based relative motion, are
premultiplied by d0 (see Eq. (2.39)). Let recall that ρν = 1 + e cos ν.

However, Eq. (5.4) is inefficient to verify the membership of a periodic state
d (with d0 = 0) to the admissible set SD. In its current form, the inequalities
should be evaluated over an entire orbital period of the leader. To overcome
this issue, [Arantes-Gilz17] eliminated the dependence with the true anomaly
by implicitizing the envelope of the inequalities arising in Eq. (5.4). The im-
plicitization of trigonometric functions used [Hong95] method (see Appendix
C for the details). Then, a state-dependent expression of the admissible set is
available as

SD :=
{
d ∈ R6 | d0 = 0, g(d) ≤ 0

}
, (5.5)

where g = [gx, gx, gy, gy, gz, gz]
T is a vector composed of multivariate polyno-

mials in the vector of parameters as follows

gx(d1, d2, d3) =

6∑
i=0

6∑
j=0

4∑
k=0

θijk(e, x)d
i
1d

j
2d

k
3, θijk = 0 if i+ j + k > 6, (5.6)

gx(d1, d2, d3) =
6∑

i=0

6∑
j=0

4∑
k=0

θijk(e, x)d
i
1d

j
2d

k
3, θijk = 0 if i+ j + k > 6, (5.7)

gy(d4, d5) = (d4 − ey)2 + d25 − y2, (5.8)

gy(d4, d5) = (d4 − ey)2 + d25 − y2, (5.9)

gz(d1, d2) = d21 + d22 − z2, (5.10)

gz(d1, d2) = d21 + d22 − z2. (5.11)

The degree of the multivariate polynomials gx and gx is 6 for both cases.
As given by Eq. (5.5) the admissible set implicitly describes the set of

constrained periodic relative orbits within the cuboid limits {x, x, y, y, z, z} in
the vector of parameters space. This set is also a convex bounded set in the
vector of parameters space.

5.3 Analysis of the admissible set reachability

In this section, the admissible set (composed of constrained relative periodic
orbits) reachability, using a single-impulse control, is thoroughly analyzed. An
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adequate single-impulse structure, reaching a relative periodic orbit, is de-
scribed. Then, the set of reachable states under that single-impulse is formally
expressed. It is demonstrated that the intersection of the previous set of states
with the admissible set determines reachability conditions for this last one.
Moreover, by transcribing the reachability conditions to the control variables,
useful proximity indicators can be derived. Finally, by exploiting the system
periodicity, a region of attraction to the admissible set is found.

5.3.1 Instantaneous reachable set

Let define the instantaneous reachable set ∆+
dz/sat as the states which can be

instantaneously reached through a constrained single-impulse (within dead-
zone and saturation thresholds) at a given instant ν. In the Keplerian-based
relative motion, out-of-plane {d4, d5} and in-plane motions {d0, d1, d2, d3} are
decoupled (see Eq. (2.45)-(2.46)). The decoupling is also present in the admis-
sible set (see Eq. (5.6)-(5.11)) due to the hovering region characterization (a
cuboid with its sides parallel to LVLH axes). Due to the previous facts, the
out-of-plane and in-plane motions are treated separately as

∆+
dz/sat(d, ν) = ∆+

dz/sat,xz(d, ν)×∆+
dz/sat,y(d), (5.12)

where ∆+
dz/sat,xz and ∆+

dz/sat,y are the in-plane and out-of-plane reachable sets
which are described in the sequel.

Out-of-plane motion

Let define the out-of-plane state subset dy = [d4, d5]
T which is naturally peri-

odic as deduced from Eq. (2.45). When an out-of-plane impulse ∆Vy = λy ∈ R
(where λy is used for notation consistency with the in-plane case) is applied,
the state instantaneously changes as

d+
y (dy, ν, λy) = dy +BDy(ν)λy, (5.13)

where BDy ∈ R2 is extracted from the vector of parameters control matrix (see
Eq. (2.61))

BDy(ν) =
1

k2ρν

[
−sν
cν

]
, (5.14)

where k2 =
√
µ/[a(1− e2)]3. Let recall that cν = cos ν, sν = sin ν and ρν =

1 + e cos ν. Consequently, the out-of-plane impulse changes the state through
the line ∆+

y

∆+
y (dy, ν) :=

{
d+
y ∈ R2 | d+

y (dy, ν) = dy +BDy(ν)λy, λy ∈ R
}
. (5.15)
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However, as per (5.1), the impulse amplitude is constrained due to dead-zone
and saturation limits. These constraints are summarized in the set Ξdz/sat,y

Ξdz/sat,y := [−∆V ,−∆V ] ∪ [∆V ,∆V ], (5.16)

where the possibility of a null impulse has not been included due to its triviality.
Then, the out-of-plane instantaneous reachable set is formally described as

∆+
dz/sat,y(dy, ν) := {d+

y ∈ R2 | d+
y (dy, ν) = dy +BDy(ν)λy,

λy ∈ Ξdz/sat,y},
(5.17)

which consists of two line segments in the out-of-plane state space.

In-plane motion

Let define the in-plane state subset dxz = [d0, d1, d2, d3]
T and impulse ∆Vxz =

[∆Vx,∆Vz]
T . The impulse produces the following jump in the state

d+
xz(dxz, ν,∆Vxz) = dxz +BDxz(ν)∆Vxz. (5.18)

The in-plane control matrix BDxz ∈ ×R4×2 is extracted from the vector of
parameters impulsive control matrix (see Eq. (2.61))

BDxz =
1

k2(e2 − 1)ρν


ρ2ν −esνρν

−2cν − e(1 + c2ν) sνρν
−sν(2 + ecν) 2e− cνρν
esν(2 + ecν) ecνρν − 2

 . (5.19)

Let recall that the admissible set is composed of constrained relative periodic
orbits. In order to insert the relative state into a periodic orbit, the in-plane
control should steer to d+0 = 0 as

d+0 (d0, ν,∆Vxz) = d0 +Bd0,xz(ν)∆Vxz = 0, (5.20)

where

Bd0,xz(ν) =
1

k2(e2 − 1)

[
ρν
−esν

]
, (5.21)

is the first row of the in-plane control matrix BDxz given by Eq. (5.19). To
satisfy Eq. (5.20), the impulse should have the following structure

∆Vxz(d0, ν, λxz) = λxzB
⊥
d0,xz(ν) + ∆V0

xz(d0, ν), (5.22)

where λxz ∈ R is the in-plane control variable (a degree of freedom is lost in
order to enforce the periodicity condition). The vector B⊥

d0,xz
is perpendicular

(kernel space) toBd0,xz while ∆V0
xz ∈ R2 is any particular solution of Eq. (5.20)

B⊥
d0,xz(ν) =

1

1 + e2 + 2ecν

[
esν
ρν

]
, ∆V0

xz(d0, ν) = −d0B+
d0,xz

(ν), (5.23)
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where ∥B⊥
d0,xz
∥2 = 1 has been chosen as a unit vector and ∆V0

xz is obtained

through the pseudoinverse of Bd0,xz. The pseudoinverse B+
d0,xz

is always de-
fined for closed leader orbits as the first term of Bd0,xz is always negative such
that ρν/[k

2(e2 − 1)] < 0 for e ∈ [0, 1) and ν ∈ [0, 2π].
Inserting the periodicity-pursuing, d+0 = 0, strategy given by Eq. (5.22)

into Eq. (5.18) yields

d+
xz(dxz, ν, λxz) = dxz +BDxz(ν)[λxzB

⊥
d0,xz(ν) + ∆V0

xz(d0, ν)]. (5.24)

Under Eq. (5.24), the in-plane instantaneous reachable set, without accounting
for dead-zone and saturation, is described by

∆+
xz(dxz, ν) := {dxz ∈ R4 | d+

xz = dxz +BDxz(ν)[λxzB
⊥
d0,xz(ν)

+ ∆V0
xz(d0, ν)], λxz ∈ R}.

(5.25)

The in-plane dead-zone and saturation thresholds can be described through
the following set

Ξdz/sat,xz(d0, ν) :={λxz ∈ R | ∆V ≤ ∥λxzB
⊥
d0,xz(ν) + ∆V0

xz(d0, ν)∥2
≤ ∆V } = [λxz,1, λxz,1] ∪ [λxz,2, λxz,2],

(5.26)

where λxz,1, λxz,1, λxz,2 and λxz,2 are given by

λxz,1, λxz,2 =− (B⊥
d0,xz)

T∆V0
xz

±
√[

(B⊥
d0,xz

)T∆V0
xz

]2
− ∥∆V0

xz∥22 +∆V 2,
(5.27)

λxz,1, λxz,2 =− (B⊥
d0,xz)

T∆V0
xz

±
√[

(B⊥
d0,xz

)T∆V0
xz

]2
− ∥∆V0

xz∥22 +∆V
2
.

(5.28)

The dependencies with ν and d0 have been omitted in Eq. (5.27)-(5.28) for the
sake of clarity. Inserting the dead-zone and saturation constraints set given by
Eq. (5.26) into Eq. (5.25), a formal description of the in-plane instantaneous
reachable set is obtained

∆+
dz/sat,xz(dxz, ν) := {dxz ∈ R4 | d+

xz = dxz +BDxz(ν)[λxzB
⊥
d0,xz(ν)

+ ∆V0
xz(d0, ν)], λxz ∈ Ξdz/sat,xz(d0, ν)},

(5.29)

which consists of two line segments in the in-plane state space.

5.3.2 Admissible set reachability

The necessary and sufficient condition to instantaneously reach the admissible
set is

Γ+
dz/sat(d, ν) = Γ+

dz/sat,xz(dxz, ν)× Γ+
dz/sat,y(dy, ν) ̸= ∅, (5.30)
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where

Γ+
dz/sat,xz(dxz, ν) = ∆+

dz/sat,xz(dxz, ν) ∩ SDxz , (5.31)

Γ+
dz/sat,y(dy, ν) = ∆+

dz/sat,y(dy, ν) ∩ SDy . (5.32)

Note that SDxz and SDy are the projections of the admissible set into the
in-plane and out-of-plane space respectively. The sets Γ+

dz/sat,xz and Γ+
dz/sat,y

are formed by the intersection of the in-plane and out-of-plane instantaneous
reachable sets with their respective admissible set projections. Since the in-
stantaneous reachable sets were demonstrated to be straight lines segments as
per Eq. (5.17) and Eq. (5.29), and the admissible set projections are convex
and bounded (as the admissible set is), the sets Γ+

dz/sat,xz and Γ+
dz/sat,y are con-

cluded to be composed of line segments if non empty. These line segments are
parameterized in terms of the control variables λxz and λy respectively. To
obtain a tractable form of the line segments Γ+

dz/sat,xz and Γ+
dz/sat,y, let define

the following sets

Γ+
xz(dxz, ν) = ∆+

xz(dxz, ν) ∩ SDxz , (5.33)

Γ+
y (dy, ν) = ∆+

y (dy, ν) ∩ SDy , (5.34)

where each one of them is a line segment as formed by the intersection of a line,
∆+

xz and ∆+
y , with a convex bounded set, SDxz and SDy , respectively. The ex-

istence of the previous intersections is a necessary condition for the admissible
set instantaneous reachability. The intersections described in Eq. (5.33)-(5.34)
can be equivalently transcribed in terms of a seminegativity condition for the
admissible set multivariate polynomials of Eq. (5.6)-(5.11)

Γ+
xz(dxz, ν) :=

{d+
xz ∈ R4 | d+

xz = dxz +BDxz(ν)[λxzB
⊥
d0,xz(ν) + ∆V0

xz(d0, ν)],

gx(d
+
xz) ≤ 0, gx(d

+
xz) ≤ 0, gz(d

+
xz) ≤ 0, gz(d

+
xz) ≤ 0, λxz ∈ R},

(5.35)

Γ+
y (dy, ν) := {d+

y ∈ R2 | d+
y = dy +BDy(ν)λy, gy(d

+
y ) ≤ 0,

gy(d
+
y ) ≤ 0, λy ∈ R},

(5.36)

which are single line segments if non-empty. If Γ+
xz and Γ+

y are evaluated for a
given instant ν and a state d, the only free parameters would be the control
variables λxz and λy which can be explicitly inserted into the polynomials

Γ+
xz := {d+

xz ∈ R4 | d+
xz(λxz) = dxz +BDxz(λxzB

⊥
d0,xz +∆V0

xz),

gx(d
+
xz(λxz)) ≤ 0, gx(d

+
xz(λxz)) ≤ 0, gz(d

+
xz(λxz)) ≤ 0,

gz(d
+
xz(λxz)) ≤ 0, λxz ∈ R},

(5.37)

Γ+
y := {d+

y ∈ R2 | d+
y (λy) = dy +BDyλy, gy(d

+
y (λy)) ≤ 0,

gy(d
+
y (λy)) ≤ 0, λy ∈ R},

(5.38)
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thus, Eq. (5.6)-(5.11) multivariate polynomials are reduced to univariate poly-
nomials in terms of λxz and λy respectively.

From the control perspective, it is convenient to describe the instantaneous
reachability conditions in terms of the control variables (λxz, λy) instead of the
reachable states (d+). Inserting the state jumps of Eq. (5.24) and Eq. (5.13)
into Eq. (5.6)-(5.11), the following intervals are defined

Λxz := {λxz ∈ R | gx(λxz) ≤ 0, gx(λxz) ≤ 0, gz(λxz) ≤ 0,

gz(λxz) ≤ 0} = [lxz, lxz],
(5.39)

Λy := {λy ∈ R | gy(λy) ≤ 0, gy(λy) ≤ 0} = [ly, ly], (5.40)

which are intervals filled by the control variables guaranteeing the admissible
set instantaneous reachability from a given state and instant. Consequently,
the non-emptiness of the intervals Λxz and Λy is a neccesary condition for the
admissible set instantaneous reachability.

Remark 5.1: if non-empty, the connectedness of the intervals Λxz, Λy and
consequently of the sets Γ+

xz and Γ+
y is ensured by the convexity of SD.

The intervals extrema lxz, lxz, ly, ly can be obtained by computing and
pruning the roots of Eq. (5.39)-(5.40) univariate polynomials. Specifically, the
out-of-plane (gy, gy) and radial (gz, gz) polynomials are quadratic with respect
to λy and λxz respectively. The in-track polynomials (gx, gx) are sextic with
respect to λxz. Accordingly, if Eq. (5.24) and Eq. (5.13) control lines intersect
the admissible set, such that Γ+

xz ̸= ∅ and Γ+
y ̸= ∅, then the existence of

two real roots for each polynomial is ensured. Note that in the state space,
the admissible set is convex and the reachable states (unconstrained) form a
straight line. This justifies the Remark 5.1. On the contrary, the absence of
real roots, for any of the polynomials, reveals that either Γ+

xz = ∅ or Γ+
y = ∅. In

that case, the admissible set is instantaneously unreachable due to the relative
geometry between the current state, the control line and the admissible set
(regardless of the dead-zone and saturation thresholds).

Taking into account the control dead-zone and saturation sets (Λdz/sat,xz

and Λdz/sat,y as per Eq. (5.26) and Eq. (5.16) respectively), the intersections
defined in Eq. (5.37)-(5.38) are modified as

Γ+
dz/sat,xz := {d

+
xz ∈ R4 | d+

xz(λxz) = dxz +BDxz(λxzB
⊥
d0,xz

+∆V0
xz), gx(d

+
xz(λxz)) ≤ 0, gx(d

+
xz(λxz)) ≤ 0,

gz(d
+
xz(λxz)) ≤ 0, gz(d

+
xz(λxz)) ≤ 0, λxz ∈ Ξdz/sat,xz},

(5.41)

Γ+
dz/sat,y := {d+

y ∈ R2 | d+
y (λy) = dy +BDyλy, gy(d

+
y (λy)) ≤ 0,

gy(d
+
y (λy)) ≤ 0, λy ∈ Ξdz/sat,y},

(5.42)

which correspond to the sets of the necessary and sufficient condition for the
admissible set instantaneous reachability (see Eq. (5.30)).
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The control variables, within dead-zone and saturation thresholds, enabling
the admissible set instantaneous reachability are obtained as

Λdz/sat,xz = Λxz ∩ Ξdz/sat,xz = [λxz,1, λxz,2] ∪ [λxz,3, λxz,4], (5.43)

Λdz/sat,y = Λy ∩ Ξdz/sat,y = [λy,1, λy,2] ∪ [λy,3, λy,4], (5.44)

which are non-connected intervals in general. They result from the intersec-
tion of the connected intervals Λxz and Λy (see Eq. (5.39)-(5.40)) with the
non connected dead-zone and saturation intervals Ξdz/sat,xz and Ξdz/sat,y given
by Eq. (5.26) and Eq.(5.16) respectively. Then the sufficient condition of
Eq. (5.30) for the admissible set instantaneous reachability can be equivalently
expressed, in terms of the control variables, as

∆+
dz/sat(d, ν) ̸= ∅ ⇐⇒ Λdz/sat(d, ν) ̸= ∅, (5.45)

where

Λdz/sat(d, ν) = Λdz/sat,xz(dxz, ν)× Λdz/sat,y(dy, ν). (5.46)

To resume, the non-emptiness of the non-connected intervals Λdz/sat,xz and
Λdz/sat,y is assessed through the intersection of the univariate polynomials
{gx, gx, gy, gy, gz, gz} real roots intervals, if any, with dead-zone and satura-
tion intervals. If the previous intersection does exist, then, there are control
variables, within dead-zone and saturation thresholds, that can be employed
to instantaneously reach the admissible set with a single-impulse.

5.3.3 Admissible set proximity

The necessary and sufficient admissible set instantaneous reachability condition
has been formally defined in Eq. (5.45). However, it may be of interest to
quantify the proximity of the admissible set in terms of control. Such indicator
would allow to tune the controller reactivity (e.g. do not apply a control until
the reachability window is near to be closed). A direct choice for the admissible
set proximity indicator is to measure the length of the non-connected intervals
Λdz/sat,xz and Λdz/sat,y (see Eq. (5.43)-(5.44))

Lxz(d, ν) =|λxz,2 − λxz,1|+ |λxz,4 − λxz,3|,
Ly(d, ν) =|λy,2 − λy,1|+ |λy,4 − λy,3|.

(5.47)

The state and instant dependencies has been omitted at the right-hand side
for the sake of clarity. When these lengths are large, it means there is a huge
range of controls enabling the admissible set instantaneous reachability. This
offers the possibility to delay the control action (which may be of interest if
the number of impulses is to be minimized) if the indicators are continuous
functions. On the other hand, when these lengths are small, it means there
are few control possibilities that could vanish in the near future. Under the
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previous fact, it is evident that monitoring the proximity indicator helps to
command an optimal control decision.

Additionally, the instantaneous reachability condition can also be expressed
in terms of the lengths Lxz and Ly as

Lxz(dxz, ν) ̸= 0 ∧ Ly(dy, ν) ̸= 0 ⇐⇒ Λdz/sat(d, ν) ̸= ∅. (5.48)

Nonetheless, the lengths (Lxz, Ly) of the non-connected intervals Λdz/sat,xz and
Λdz/sat,y are not well-posed proximity indicators (though very intuitive). As a
matter of fact, they may suffer discontinuities over time which may compro-
mise the impulse delay strategy. The explanation is that the admissible set SD,
though being a convex bounded set, is defined as the interior region resulting
from the intersections of several semi-algebraic sets described as multivariate
polynomials in the state space (see Eq. (5.6)-(5.11)). Therefore, SD has several
edges and vertexes where the disjoint lines Γ+

dz/sat,xz and Γ+
dz/sat,xz may instan-

taneously vanish in a discontinuous manner. As a consequence, the lengths
Lxz and Ly are not guaranteed to be continuous functions. To overcome this
issue, the subsequent proximity indicators (Gxz, Gy) and its derivatives with
respect to the true anomaly (Gν,xz, Gν,y) are defined as

Gxz(dxz, ν) =

{
max{g∗x, g∗x, g∗z , g∗z}, if Lxz > 0,

0, if Lxz = 0,

Gν,xz(dxz, ν) =
dGxz

dν
,

(5.49)

Gy(dy, ν) =

{
max{g∗y , g∗y}, if Ly > 0,

0, if Ly = 0,

Gν,y(dy, ν) =
dGy

dν
,

(5.50)

where the dependencies with the current state and instant has been omitted
at the right-hand side (and they will be frequently omitted in this paragraph
for that reason). The variables {g∗x, g∗x, g∗y , g∗y , g∗z , g∗z} are defined as follows

g∗x = min
λxz

gx(λxz) s.t. λxz ∈ Λdz/sat,xz,

g∗x = min
λxz

gx(λxz) s.t. λxz ∈ Λdz/sat,xz,
(5.51)

g∗y = min
λy

gy(λy) s.t. λy ∈ Λdz/sat,y,

g∗y = min
λy

gy(λy) s.t. λy ∈ Λdz/sat,y,
(5.52)

g∗z = min
λxz

gz(λxz) s.t. λxz ∈ Λdz/sat,xz,

g∗z = min
λxz

gz(λxz) s.t. λxz ∈ Λdz/sat,xz,
(5.53)
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thus {g∗x, g∗x, g∗y , g∗y , g∗z , g∗z} are the minimum values of the univariate polyno-

mials, resulting from the insertion of the expressions for the state after the
impulse (see Eq. (5.13) and Eq. (5.18)) into the admissible set description of
Eq. (5.6)-(5.11). More precisely, the minimums are computed as

g∗(·) = g(·)(λ
∗
(·)),

λ∗
(·) =


dg(·)

dλ(·)

∣∣∣∣
λ(·)=λ∗

(·)

= 0, if λ∗
(·) ∈ Λdz/sat,(·),

min{λ(·),1, λ(·),2, λ(·),3, λ(·),4}, if λ∗
(·) /∈ Λdz/sat,(·),

(5.54)

which has been presented in a generic form. Note that the derivative of the
univariate polynomials with respect to the control variables is a polynomial
with one degree less (e.g. straight lines equations for the out-of-plane and ra-
dial constraints). Under the previous definitions, the admissible set proximity
indicators Gxz and Gy are guaranteed to be continuous functions over time. As
such, they are well-posed indicators because they can capture the last control
opportunity to instantaneously reach the admissible set. However, the prox-
imity indicators derivatives Gν,xz and Gν,y are not continuous functions due to
the max operator defining Gxz and Gy in Eq. (5.49)-(5.50).

In order to clarify the previous concepts, a sketch in the in-plane state
subset d0d2d3 space is presented in Fig. 5.2. In that figure, the current state
is considered to be quasi-periodic, |d0| ≈ 0. This assumption simplifies the
analysis because the state evolution would be slow enough to consider the
state invariant over one leader orbital period (let recall the vector of relative
parameters state transition as per Eq. (2.47))

|d0| ≈ 0 −→ d(ν0) ≈ d(ν0 +∆ν), ∆ν ∈ [0, 2π]. (5.55)

The quasi-periodic state hypothesis removes the problem dependency with the
state as it remains invariant over time. Consequently, the current instant ν
is the only free parameter that arises through the control matrix BD(ν) (see
Eq. (5.18) and Eq. (5.13)). This assumption is supported by the hovering
problem (see problem (5.1)) where it is expected that the spacecraft is close
to a periodic orbit within the hovering region. Alternatively, if the control
goal is to reach the hovering region from a distant position (which is not the
problem under consideration), the quasi-periodic assumption would not be
valid in general. Returning to the sketch of Fig. 5.2, a quasi-periodic state out
of the admissible set is shown as a white dot. The term ∆V0

xz of the applied
impulse drives the state to the d0 = 0 plane (black dot). From that point, the
remaining impulse part, λxzB

⊥
d0,xz

, allows the state to change along the straight

lines ∆+
xz. The intersection of these lines with the admissible set projection

in d2d3 evidences the possibility of instantaneous reachability. Taking into
account impulse dead-zone and saturation thresholds, the reachable sets are
reduced to ∆+

dz/sat. The intersection length of these line segments with the
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admissible set yields the proximity indicator Lxz. An option to instantaneously
reach the admissible set would be to choose a point within that intersection
(e.g. the black star) and jump to it with ∆d = ∆V0

xz + λxzB
⊥
d0,xz

.

Additionally, three different situations at instants ν1 < ν2 < ν3, after
achieving d0 = 0 by the impulse periodicity component, are analyzed. It is
evident that Lxz(dxz, ν1) > Lxz(dxz, ν2) > Lxz(dxz, ν3) = 0. Equivalently, it
can be deduced that Gxz(dxz, ν1) < Gxz(dxz, ν2) < Gxz(dxz, ν3) = 0. This
shows that the admissible set is instantaneously reachable at instants ν1 and
ν2 but it is unreachable at instant ν3. Let assume that ν3 is the current instant
which lacks admissible set instantanous reachability. Under the previous quasi-
periodic assumption, if one looks ahead at future instants within a target orbital
period, it will be deduced that Lxz(ν1+2π) ≈ Lxz(ν1) > 0 and Lxz(ν2+2π) ≈
Lxz(ν2) > 0. In a general form, Lxz(ν) ≈ Lxz(ν + 2π) (Gxz(ν) ≈ Gxz(ν + 2π))
due to the control matrix periodicity, BD(ν) = BD(ν + 2π) (see Eq. (2.46)).
This periodicity is extended to the reachable sets as ∆+

dz/sat(ν) ≡ ∆+
dz/sat(ν +

2π). It can be concluded that, even if the admissible set is instantaneously
unreachable, future reachability opportunities (if any) could be predicted by
exploiting the periodicity of the system. This fact can be exploited to safely
delay a control action by knowing that a window of single-impulse control
opportunities will open in the future. The previous deductions also apply to
the out-of-plane motion which is naturally periodic, dy(ν) = dy(ν + 2π).

Figure 5.2: Sketch of the in-plane instantaneous reachability and prox-
imity.
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5.3.4 Region of attraction to the admissible set

In Section 5.3.1, the reachable set (with a single-impulse) was exploited to de-
rive the admissible set instantaneous reachability conditions and its associated
proximity indicators. Moreover, under the quasi-periodic state assumption,
the admissible set instantaneous reachability and proximity indicators were
demonstrated to be periodic over the next leader orbital period. As such, the
set of states allowing the admissible set instantaneous reachability over a leader
orbital period can be seen as a region of attraction to the admissible set. Let
define the admissible set region of attraction D as

D = Dxz ×Dy, (5.56)

where its projections into the in-plane and out-of-plane state spaces are for-
mally defined as

Dxz :=

{
dxz ∈ R4 : dxz /∈ SDxz ,

1

2π

∫ ν+2π

ν
Lxz(dxz(τ), τ)dτ > 0

}
, (5.57)

Dy :=

{
dy ∈ R2 : dy /∈ SDy ,

1

2π

∫ ν+2π

ν
Ly(dy, τ)dτ > 0

}
, (5.58)

which means that a state belongs to the region of attraction if there exists
a time window over the next leader orbital period where the admissible set is
instantaneously reachable. Note that, even with the quasi-periodic assumption,
the in-plane state variation when d0 ̸= 0 has been considered in Eq. (5.57). The
region of attraction D to the admissible set is of interest for the event-based
predictive controller that will be designed in the sequel. This is due to the
fact that if the spacecraft state is within the region of attraction, then it is
guaranteed that it could instantaneously reach the admissible set in a finite
period of time (a leader orbital period at most) even if at the current instant
the admissible set is not reachable. This conclusion is highlighted in Fig. 5.3
which shows the periodic control range (∆+ lines in the d space) for a state
in the region of attraction. It can be easily seen that a range of single-impulse
controls is able to intersect the admissible set (black region) while the remaining
control range is unable to intersect it.

Equations (5.56)-(5.58) can be summarized to provide the necessary and
sufficient condition for a state d to belong to the attractive set D

∫ ν+2π

ν
Lxz(dxz(τ), τ)dτ > 0 ∧

∫ ν+2π

ν
Ly(dy, τ)dτ > 0⇐⇒ D ∈ D. (5.59)

In order to obtain a computational tractable form of the integrals arising



140 5.4 Event-based predictive controller

Figure 5.3: Sketch of the region of attraction to the admissible set.

in Eq. (5.59), these are discretized as follows

1

2π

∫ ν+2π

ν
Lxz(dxz(τ), τ)dτ ≈

nν∑
i=1

Lxz(dxz(νi), νi), (5.60)

1

2π

∫ ν+2π

ν
Ly(dy, τ)dτ ≈

nν∑
i=1

Ly(dy, νi), (5.61)

where νi = ν + 2π/nν , nν ∈ N. Using the previous approximation, the neces-
sary and sufficient condition for a state to be in the region of attraction (see
Eq. (5.59)) boils down to

nν∑
i=1

Lxz(dxz(νi), νi) > 0 ∧
nν∑
i=1

Ly(dy, νi) > 0 ⇐⇒ d ∈ D, (5.62)

which is the expression employed in the subsequent event-based predictive
controller.

5.4 Event-based predictive controller

The analysis of the admissible set reachability in Section 5.3 is used for the
design of an event-based predictive controller. This controller is based on the
computation of a single-impulse control with associated trigger rules. The
single-impulse control law computation is highly efficient (from a computa-
tional perspective) since it only requires a finite number of objective function
evaluations. Then, by using the concepts of admissible set reachability, prox-
imity and region of attraction, the trigger rules are properly defined. These
ensure the feasibility of the single-impulse control computation when triggered.



5.4 Event-based predictive controller 141

5.4.1 Single-impulse control law

In the previous developments, it was exploited that, under Keplerian linear
relative dynamics, the out-of-plane and in-plane motions are decoupled. In
principle, the computation of a single-impulse control can be treated separately
for each case. However, in the case that both in-plane and out-of-plane controls
are required at the same time, their coupling (through the impulse amplitude
constraints) has to be considered.

Out-of-plane control

In order to instantaneously steer the state subset dy into the out-of-plane
admissible set SDy at a given instant ν, the following program is considered

minimize
λy

|∆Vy|,

subject to d+
y = dy +BDy(ν)∆Vy,

d+
y ∈ SDy ,

∆Vy = λy,

λy ∈ Ξdz/sat,y,

(5.63)

which minimizes the control impulse amplitude. In Section 5.3.2, it was demon-
strated that the constraints of the problem (5.63) can be reduced to λy ∈
Λdz/sat,y(dy, ν) (see Eq. (5.43)). The state and time dependency will be sub-
sequently omitted for the sake of clarity. Then, the control program (5.63) is
simplified as

minimize
λy

|λy|,

subject to λy ∈ Λdz/sat,y,

Λdz/sat,y ≡ [λy,1, λy,2] ∪ [λy,3, λy,4],

(5.64)

where it can be easily deduced that the set of possible optimal candidates, Λ∗
y,

is composed by the extremas of the non-connected intervals forming Λdz/sat,y

Λ∗
y = {λy,1, λy,2, λy,3, λy,4}. (5.65)

Finally, the optimal solution can be easily found by evaluating the objective
function for this set of possible optimal candidates and taking the minimum

λ∗
y = arg min

λy∈Λ∗
y

(|λy|). (5.66)

Note that only four objective function evaluations are needed.
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In-plane control

To instantaneously steer the in-plane state dxz to its corresponding admissible
set SDxz , the following program is considered

minimize
λxz

∥∆Vxz∥1,

subject to d+
xz = dxz +BDxz(ν)∆Vxz,

d+
xz ∈ SDxz ,

∆Vxz = λxzB
⊥
d0,xz(ν) + ∆V0

xz(d0, ν),

∆V ≤ ∥∆Vxz∥2 ≤ ∆V ,

(5.67)

where, similarly to the out-of-plane case, the goal is to minimize the total
in-plane impulse amplitude (directly related to fuel consumption). The con-
straints arising in the optimization problem (5.67) were shown, in Section 5.3.2,
to be equivalent to λxz ∈ Λdz/sat,xz(dxz, ν) (the dependency of this set on the
state and time will be omitted for the sake of clarity). Using the previous fact,
the control program (5.67) is simplified to

minimize
λxz

|λxzB
⊥
d0,x +∆V 0

x |+ |λxzB
⊥
d0,z +∆V 0

z |

subject to λxz ∈ Λdz/sat,xz,

Λdz/sat,xz ≡ [λxz,1, λxz,2] ∪ [λxz,3, λxz,4].

(5.68)

For the previous optimization problem, the set of possible optimal candi-
dates Λ∗

xz is formed by the extrema of the non-connected intervals composing
Λdz/sat,xz and the points where the slope of the objective function changes its
tendency

Λ∗
xz =

{
λxz,1, λxz,2, λxz,3, λxz,4,−∆V 0

x /B
⊥
d0,x,−∆V 0

z /B
⊥
d0,z

}
. (5.69)

Then, the optimal solution is obtained by evaluating the objective function at
the optimal candidates (six times at most) and taking the minimum

λ∗
xz = arg min

λxz∈Λ∗
xz∩Λdz/sat,xz

(|λxzB
⊥
d0,x +∆V 0

x |+ |λxzB
⊥
d0,z +∆V 0

z |). (5.70)

Note the that the points, where the slope of the objective function changes its
tendency, have to be members Λdz/sat,xz in order to be evaluated.

Coupled motion control

In the previous cases, the control is assumed to be purely applied on the in-
plane or out-of-plane component. When both in-plane and out-of-plane con-
trols are required at the same time, a coupled program has to be considered.
This program has to fully account for the impulse constraint of problem (5.1)
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while preserving the low complexity level of programs (5.66) and (5.70). Fol-
lowing these programs, the coupled impulse with in-plane and out-of-plane
components is

∆V(dxz, ν, λxz, λy) =

λxzB
⊥
d0,x

(dxz, ν) + ∆V 0
x (dxz, ν)

λy

λxzB
⊥
d0,z

(dxz, ν) + ∆V 0
z (dxz, ν)

 . (5.71)

Then, when control is required in both components, the following program is
stated

minimize
λxz ,λy

∥∆V∥1,

subject to d+ = d+BD∆V,

d+ ∈ SD,
∆V = [λxzB

⊥
d0,x +∆V 0

x , λy, λxzB
⊥
d0,z +∆V 0

z ]
T ,

∆V ≤∥∆V∥2≤ ∆V ,

(5.72)

where the dependencies with time, ν, and the in-plane state dxz have been
omitted for the sake of clarity. The constraints of the coupled program (5.72)
can not be directly related to the sets Λdz/sat,xz and Λdz/sat,y respectively.
However, the following non-connected set, Λdz/sat ∈ R2, can be defined over
the previous ones

Λdz/sat = Λdz/sat,xz × Λdz/sat,y. (5.73)

Using the set Λdz/sat, the program (5.72) can be equivalently transformed as

minimize
λxz ,λy

|λxzB
⊥
d0,x +∆V 0

x |+ |λy|+ |λxzB
⊥
d0,z +∆V 0

z |,

subject to λxz, λy ∈ Λdz/sat,

Λdz/sat ≡ ([λxz,1, λxz,2] ∪ [λxz,3, λxz,4])

× ([λy,1, λy,2] ∪ [λy,3, λy,4])

∆V ≤
√

(λxzB⊥
d0,x

+∆V 0
x )

2 + λ2
y + (λxzB⊥

d0,z
+∆V 0

z )
2,√

(λxzB⊥
d0,x

+∆V 0
x )

2 + λ2
y + (λxzB⊥

d0,z
+∆V 0

z )
2 ≤ ∆V ,

(5.74)

Note that the membership of the control variables, λxz and λy, to the set
Λdz/sat does not guarantee the fulfilment of the impulse constraint in this case.
However, in order to keep a low computational burden, the search space can
be restricted to the sixteen vertexes of the set Λdz/sat

Λ∗ ≡ {(λxz, λy) ∈ {λxz1, λxz2, λxz3, λxz4} × {λy1, λy2, λy3, λy4}}. (5.75)

Consequently, the optimal solution is computed as

(λ∗
xz, λ

∗
y) =

arg min
(λxz ,λy)∈Λ∗∩Ξdz/sat

(|λxzB
⊥
d0,x +∆V 0

x |+ |λy|+ |λxzB
⊥
d0,z +∆V 0

z |), (5.76)
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where the set Ξdz/sat ∈ R2 is defined as follows

Ξdz/sat ≡ {(λxz, λy) ∈ R2 |

∆V ≤
√
(λxzB⊥

d0,x
+∆V 0

x )
2 + λ2

y + (λxzB⊥
d0,z

+∆V 0
z )

2 ≤ ∆V }.

Let recall that the individual components of the search space Λ∗ may not fulfil
the impulse constraints. The vertexes of the search space violating the con-
straints are removed as optimal candidates as indicated in Eq. (5.76). Nonethe-
less, if Λ∗

xz ∩Ξdz/sat ≡ ∅ which means that all of the candidate solutions violate
the impulse constraint, the in-plane control is prioritized at that instant and
the out-of-plane control is applied in a subsequent time step. The in-plane
control is prioritized because it is found (by numerical experimentation) to be
more restrictive that the out-of-plane one. This fact will be highlighted in
Section 5.5.

5.4.2 Trigger rules

The trigger rules are the core of the event-based controller because they decide
which control actions are applied (if any). These rules are designed in order to
achieve a threefold objective: they must ensure the control programs (5.66),
(5.70) and (5.74) feasibility when executed; for the sake of efficiency, they
should avoid unnecessary control actions; Zeno phenomena (which is the trigger
of infinite control actions over a finite time period) must be precluded. In a
rough way, the decision tree of the designed trigger rules is summarized as:

• If the relative state is within the admissible set, no control action is
required.

• On the contrary, if the relative state is not in the admissible set, a decision
is triggered according to the following conditions:

– If the admissible set is instantaneously reachable and its proximity
indicators fall below given thresholds, a single-impulse control is
commanded.

– If the admissible set is not instantaneously reachable but the current
state belongs to its region of attraction, the event-based control
awaits until the instantaneous reachability window opens (which is
guaranteed to open in less than one leader orbital period).

– If the previous conditions are not met, a global stable controller
is commanded. This controller makes the state converge to the
admissible set in a finite period of time.

Under the previous trigger rules, the proposed event-based controller is
shown as pseudocode in Algorithm 3. The membership of the state d to the
admissible set SD and its region of attraction D is assessed using Eq. (5.5)
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and Eq. (5.62) respectively (steps 2, 4 and 34). If the relative state belongs
to the admissible set, it is guaranteed that the follower is within the hovering
region and no action is required (step 3). Alternatively, if the relative state
has escaped the admissible set but is on its region of attraction, it means that
either a reachability window is open or it will be over the next orbital period
(step 4). This guarantees the feasibility of using a single-impulse control to
steer the relative state back to the admissible set. On the other hand, if the
relative state is not on the admissible set region of attraction (step 34), it
means that a single-impulse control will not suffice to steer the relative state
back to the admissible set. Under the previous fact, a global stable controller,
to the admissible set, with N -impulses will be employed.

Let focus on the case where the state is outside the admissible set but be-
longs to its region of attraction (step 4). In that situation, a trigger decision
tree spans through steps 5-33. The trigger rules take a control decision based
on the admissible set proximity indicators Gxz and Gy and its derivatives Gν,xz

and Gν,y. If the proximity indicators, Gxz or Gy, are equal or above predefined
thresholds, δxz or δy, and growing, Gν,xz > 0 or Gν,y > 0, a single-impulse
steering the state back to the admissible set is computed and applied (steps
7-8, 10-11, 13-14, 19-20 and 26-27). The single-impulse control is computed
by one of the programs: (5.66), (5.70) or (5.76). The one to solve depends on
which control direction is required. On the contrary, when the proximity in-
dicators fall below the thresholds or are decreasing, the single-impulse control
is postponed (steps 22, 29 and 32). As a matter of fact, the thresholds δxz or
δy are used to tune the reactivity of the controller. If the thresholds are too
low, the single-impulse will be commanded as soon as the reachability window
is opened. Otherwise, if higher values are chosen, the single-impulse will await
until the end of the reachability window. This does not alter control accu-
racy since a necessary condition for the admissible set to be instantaneously
reachable is that the relative state lies within the hovering region polytopic
constraints. Note that a single-impulse is only able to instantaneously change
the velocity but not the position (at least two impulses would be required if the
spacecraft is outside the hovering region). These thresholds have to be chosen
by assuring a minimum degree of reactivity within the region of attraction. To
do so, one should find a lower bound for the smallest possible values of Gxz

and Gy over the region of attraction domain (during a leader orbital period)
and then take more negative values than those for the thresholds δxz and δy
respectively. The previous condition can be expressed as

δxz < min

{
sup
d∈D

(
max

ν∈[0,2π]
Gxz(dxz, ν)

)}
,

δy < min

{
sup
d∈D

(
max

ν∈[0,2π]
Gy(dy, ν)

)}
.

(5.77)

These upper bounds guarantee that a single-impulse control is triggered for one
of the instantaneous reachability windows arising in the region of attraction.
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This ensures that the controller reacts at some instant over the next leader
orbital period. Note that the proximity thresholds are negative, δxz < 0 and
δy < 0, due to the negativity of the proximity indicators (see Eq. (5.49)-(5.50)).

It may be also the case that the admissible set is instantaneously unreach-
able when Gxz = 0 or Gy = 0, then Gν,xz = 0 and Gν,y = 0. If the state
is contained in the admissible set region of attraction D, then it is guaran-
teed that at least one instantaneous reachability windows will open along the
next leader orbital period. Under such condition, it is safe to await until the
reachability window opens (step 32). On the other hand, if the state does not
belong to the admissible set region of attraction, a N -impulses stable control
method has to be employed. In that sense, an adapted version of the global
stable controller of [Arantes-Gilz19] (see Algorithm 7 in Appendix D) is used
(step 35). The global stable controller repeats a sequence of N ≥ 3 impulses
spaced in time where the admissible set is reached just after the application
of the final impulse. The adaptation considers the L2-norm for saturated im-
pulses (instead of the infinity-norm in [Arantes-Gilz19]) and the nullification
of impulses below the minimum impulse bit. This algorithm ensures the event-
based controller stability though its use has a potential negative impact on
control accuracy (as it only the admissible set is reached just once the set of
N -impulses is completed). This is the reason why it acts as a backup for the
single-impulse control.

5.5 Invariance of the single-impulse approach

As outlined at the end of Section 5.4.2, the prioritized single-impulse control
of the event-based algorithm only ensures convergence towards the admissible
set within a local domain (admissible set region of attraction). Due to the
previous consideration, the invariance of the single-impulse control will be as-
sessed through the theory of hybrid impulsive systems [Haddad06]. Under that
theory, the well-posedness of the single-impulse control, in the context of the
spacecraft rendezvous hovering phases, is analyzed. Subsequently, the system
invariance is studied and demonstrated to be dependant on the problem pa-
rameters. Finally, the previous analysis is extended to account for the presence
of continuous disturbances.

5.5.1 Well-posedness for hybrid impulsive systems

An impulsive control strategy for the linear Keplerian relative motion can be
recasted to a hybrid impulsive system. The hybrid system is composed of the
Eq. (2.44) continuous flow dynamics and the instantaneous state changes of
Eq. (2.60). For that reason, the main results of [Haddad06] for hybrid impulsive
systems apply to the single-impulse control of Algorithm 3. Transforming
the event-based controller steps 2-33, associated to the single-impulse control
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Algorithm 3: Event-based controller for spacecraft rendezvous hov-
ering phases.

1 begin
2 if d ∈ SD then
3 Wait.
4 else if (d /∈ SD) ∧ (d ∈ D) then
5 if (Gxz(d, ν) ≥ δxz) ∧ (Gν,xz(d, ν) > 0) ∧ (Gy(d, ν) ≥

δy) ∧ (Gν,y(d, ν) > 0) then
6 if (dxz /∈ SDxz) ∧ (dy ∈ SDy) then
7 Compute λxz by solving the program (5.70);

8 Apply ∆V← λxzB
⊥
d0,xz

(ν) + ∆V0
xz(d0, ν);

9 else if (dxz ∈ SDxz) ∧ (dy /∈ SDy) then
10 Compute λy by solving the program (5.66);
11 Apply ∆V← λyjL;

12 else
13 Compute (λxz, λy) by solving the program (5.76);

14 Apply ∆V← λxzB
⊥
d0,xz

(ν) + ∆V0
xz(d0, ν) + λyjL;

15 end

16 end
17 else if (Gxz(d, ν) ≥ δxz) ∧ (Gν,xz(d, ν) > 0) then
18 if dxz /∈ SDxz then
19 Compute λxz by solving the program (5.70);

20 Apply ∆V← λxzB
⊥
d0,xz

(ν) + ∆V0
xz(d0, ν);

21 else
22 Wait
23 end

24 else if (Gy(d, ν) ≥ δy) ∧ (Gν,y(d, ν) > 0) then
25 if dy /∈ SDy then
26 Compute λy by solving the program (5.66);
27 Apply ∆V← λyjL;

28 else
29 Wait
30 end

31 else
32 Wait.
33 end

34 else if (d /∈ SD) ∧ (d /∈ D) then
35 Apply the global stabilizing controller of Algorithm 7 (see

Appendix D).
36 end

37 end
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strategy, into a hybrid impulsive system yields

d′(ν) =AD(ν)d(ν), d0 ∈ D ∪ SD, (d, ν) /∈ Z,
∆d(ν) =BD(ν)∆V(ν), (d, ν) ∈ Z, (5.78)

where ∆d = d+ − d denotes the instantaneous change in the state due to an
impulsive control. Note that d0 = d(ν0). The set Z denotes the resetting set
(which triggers an impulse) as

Z = Zxz ×Zy, (5.79)

where the respective in-plane and out-of-plane resetting sets are given by

Zxz :={(d, ν) : d /∈ SDxz , d ∈ Dxz, Gxz(dxz, ν) ≥ δxz, Gν,xz > 0}, (5.80)

Zy :={(d, ν) : d /∈ SDy , d ∈ Dy, Gy(dy, ν) ≥ δy, Gν,y > 0}. (5.81)

In this study, the initial state d0, is assumed to lie within the union of the
admissible set SD with its region of attraction D. The opposite case, where
[Arantes-Gilz19] global stable controller is called (steps 34-36 of Algorithm 3),
is out of the scope of this analysis which only concerns the single-impulse
control.

For the hybrid impulsive system (5.78), the well-posedness of the resetting
set is only guaranteed if the following assumptions are met:

Assumption 5.5.1. A trajectory can only enter the resetting set through a
point lying on its boundary but not from its interior [Haddad06, chapter 2,
p.13].

Assumption 5.5.2. When a trajectory intersects the resetting set, it exits Z
without returning to it for a finite period of time [Haddad06, Chapter 2, p.13].

In other words, assumption 5.5.1 guarantees that a control response is given
at the exact instant where the trajectory intersects the resetting set. The sec-
ond assumption 5.5.2 precludes Zeno phenomena as it assures that the state
after the impulse cannot be on the resetting set boundary. These assump-
tions guarantee the uniqueness of the system (5.78) trajectories over a forward
interval of time.

Let assess the first assumption 5.5.1 for the event-based controller in Al-
gorithm 3. If the initial state lies within the admissible set SD it remains
invariant over time as its dynamics are stationary since d0 = 0. As a conse-
quence, it cannot reach the resetting set. On the contrary, if the initial state
lies in the region of attraction D, it can only enter the resetting set Z through
its boundary ∂Z characterized by

∂Z = ∂Zxz × ∂Zy, (5.82)
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where

∂Zxz := {(d, ν) : d /∈ SDxz , d ∈ Dxz, Gxz(dxz, ν) = δxz, Gν,xz > 0}, (5.83)

∂Zy := {(d, ν) : d /∈ SDy , d ∈ Dy, Gy(dy, ν) = δy, Gν,y > 0}. (5.84)

Note that by definition Gxz and Gy (see Eq. (5.49)-(5.50)) are continuous
functions in time (except when an impulse control is applied), thus it is assured
that the state enters the resetting set through its boundary.

The second assumption 5.5.2 requires that when a trajectory intersects
the resetting set, it exits Z without returning to it for some finite time. In
the proposed event-based control algorithm, as soon as the state enters the
resetting set, a single-impulse instantaneously steers the state to the admissible
set. By the resetting set definition (see Eq. (5.79)-(5.81)) it is deduced that
its intersection with the admissible set is empty, SD ∩ Z = ∅ (a state cannot
be at the same time in the resetting and admissible sets). Consequently, the
resetting set is not contained within the admissible set. Let recall that when
the state is on the admissible set, its dynamics is stationary and remains there
indefinitely. These facts preclude the return of the state d to the resetting set
Z after the single-impulse control is executed.

5.5.2 Invariance of the hybrid impulsive system

This section presents a result guaranteeing the existence of an invariant attrac-
tive set for the hybrid impulsive system (5.78). It is not possible to directly use
the invariance principles for linear time invariant systems given in [Haddad06,
Chapter 2, p.38] as the Keplerian linear relative motion under consideration
is time-varying. However, the system periodicity would be exploited to obtain
results aligned with the rationale for time invariant systems.

In order to reach the invariance results, some auxiliary sets needs to be
properly defined and its geometrical shapes has to be inferred. These are the
reachable set over one period and the dead-zone set.

Geometry of the reachable set over one period

At the end of Section 5.3 and under the quasi-periodic assumption, |d0| ≈ 0,
it was demonstrated that the instantaneous reachability is periodic with the
leader orbital period. Extending the instantaneous reachability condition over
a leader orbital period allowed to define a region of attraction to the admissible
set (see Eq. (5.56)-(5.58)) Let study now the state reachability over one period.
Let define the reachable set of states over one period as

F = Fxz ×Fy. (5.85)

The reachable sets will be conveniently expressed in terms of the state incre-
ment ∆d = d+−d ∈ R6 which results from the application of a single-impulse.
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The out-of-plane Fy and in-plane Fxz reachable sets over one period are ana-
lyzed separately.

Out-of-plane motion: the out-of-plane state increment, ∆dy = d+
y − dy =

[∆d4,∆d5]
T , is given by

∆dy(ν, λy) = λyBDy(ν) =
λy

k2ρν

[
−sν
cν

]
. (5.86)

The out-of-plane state increment forms a geometric shape over one period.
This geometric shape can be obtained by implicitizing Eq. (5.86) (see [Hong95]
and Appendix C for the details concerning the implicitization of trigonometric
functions) with respect to its independent variable ν

fy(∆dy, λy) =
∆d24(
λy

k2
√
1− e2

)2 +

(
∆d5 +

eλy

k2(1− e2)

)2

(
λy

k2(1− e2)

)2 − 1 = 0, (5.87)

which is the equation of an ellipse in the ∆d4∆d5 space for a constant λy and
e. Using Eq. (5.87), the out-of-plane state increment reachable set over one
period is expressed as

Fy(Υy) := {∆dy ∈ R2 | fy(∆dy, λy) = 0, λy ∈ Υy}, (5.88)

where the set Υy ⊆ R refers, in a generic way, to the admissible values for the
out-of-plane control variable λy. If the dead-zone and saturation set Ξdz/sat,y

is taken into account (see Eq. (5.16)), the constrained reachable set Fdz/sat,y is

Fdz/sat,y = Fy(Ξdz/sat,y), (5.89)

which comprises the region between two ellipses with different λy = ∆V ,∆V
according to Eq. (5.87). It is also of interest to describe both the reachable
set for impulses below the minimum impulse bit Fdz,y and the unconstrained
reachable set F∞,y

Fdz,y = Fy([−∆V ,∆V ]) (5.90)

F∞,y = Fy(R). (5.91)

Note that the unconstrained reachable set F∞,y is the whole domain R2 in the
∆d4∆d5 space.

In-plane motion: let define ∆dxz = d+
xz − dxz = [∆d0,∆d1,∆d2,∆d3]

T as
the in-plane state increment. Reorganizing terms in Eq. (5.24), the in-plane
state increment yields the following expression

∆dxz(dxz, ν, λxz) = BDxz(ν)
(
λxzB

⊥
d0,xz(ν) + ∆V0

xz(d0, ν)
)
, (5.92)
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where the in-plane state increment ∆dxz depends on the actual state due to
d0. Due to the previous fact, obtaining insight of the geometrical shape for
the in-plane reachable set over one period is more complex than it is for the
out-of-plane case. Let define the in-plane state reachable set over one period,
in terms of the state increment, as

Fxz(Υxz) := {∆dxz ∈ R4 | ∆dxz = BDxz(ν)
(
λxzB

⊥
d0,xz(ν)

+∆V0
xz(d0, ν)

)
, λxz ∈ Υxz}

(5.93)

where the set Υxz ⊆ R refers to the admissible values of the in-plane control
variable λxz. The dead-zone and saturation constraints are considered through
the set Ξdz/sat,xz (see Eq. (5.26)) hence the constrained in-plane reachable set
over one period yields

Fdz/sat,xz = Fxz(Ξdz/sat,xz(d0, ν)), ν ∈ [0, 2π]. (5.94)

Similarly to the out-of-plane case, it is of interest to describe the dead-zone
reachable set and the unconstrained reachable set

Fdz,xz = Fxz([λxz,1(d0, ν), λxz,2(d0, ν)]), ν ∈ [0, 2π], (5.95)

F∞,xz = Fxz(R). (5.96)

Note that λxz,1 and λxz,2 are the extremas of the non-connected intervals in
Ξdz/sat,xz (see Eq. (5.26)). Due to the periodicity pursuing strategy ∆d0 = −d0,
therefore the relevant in-plane state space is reduced to ∆d1∆d2∆d3. If the
quasi-equilibrium assumption |d0| ≈ 0 is made, some insight on the geometry
for the in-plane reachable set over one period can be obtained. Since |d0| ≈
0, the periodicity pursuing component of the in-plane single-impulse can be
neglected with respect to its free part such that ∥λxzB

⊥
d0,xz
∥2 ≫ ∥∆V0

xz∥2.
Under the previous assumption, Eq. (5.92) can be approximated as follows

∆dxz(ν) ≈ λxzBDxz(ν)B
⊥
d0,xz(ν) =

λxz

k2ρ


0
−sν
cν

2 + ecν

 . (5.97)

To obtain a geometrical shape of the in-plane state increment as per Eq. (5.97),
the implicitization must get rid of two independent variables. Since the rel-
evant in-plane state increment ∆d1∆d2∆d3 ∈ R3, a surface (defined by two
independent parameters) would be obtained as the result of the implicitiza-
tion. By using a Groebner basis (see [Fix96] for the details), Eq. (5.97) can be
implicitized with respect to λxz and ν such that

fxz(∆dxz) = 4∆d21 + (4− e2)∆d22 + 2e∆d2∆d3 −∆d23 = 0, (5.98)

which is the geometrical shape of a conic surface in the ∆d1∆d2∆d3 space.
Note that the cone apex is aligned with the ∆d3 direction for e = 0. Using
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Eq. (5.98), an approximation (due to the quasi-periodic assumption |d0| ≈ 0)
for the unconstrained reachable set over one period F∞,xz is available as

F∞,xz ≈ {∆dxz ∈ R4 | fxz(∆dxz) = 0}. (5.99)

The lost of the control variable, λxz, in the geometrical shape of the in-plane
reachable set over one period hinders the obtention of intuitive geometrical
shapes for the constrained Fdz/sat,xz and dead-zone Fdz,xz reachable sets over
one period. Nonetheless, they can be formally defined as

Fdz/sat,xz ≈ {∆dxz ∈ R4 | ∆dxz = λxzBDxz(ν)B
⊥
d0,xz(ν),

λxz ∈ Ξdz/sat,xz(ν), ν ∈ [0, 2π]},
(5.100)

Fdz,xz ≈ {∆dxz ∈ R4 | ∆dxz = λxzBDxz(ν)B
⊥
d0,xz(ν),

λxz ∈ (λxz,1(ν), λxz,2(ν)), ν ∈ [0, 2π]},
(5.101)

where a step back with respect to the implicitization process has been done in
order to make the control variable λxz appear again. Note that the constrained
and dead-zone in-plane reachable sets are portions of the unconstrained reach-
able set conical shape since Fdz/sat,xz,Fdz,xz ⊆ F∞,xz.

Geometry of the dead-zone set

The dead-zone set is composed of the states from where all the admissible set
instantaneous reachability opportunities, along one leader orbital period, fall
below the dead-zone threshold. Let define the dead-zone set Ddz as

Ddz = Ddz,xz ×Ddz,y. (5.102)

The dead-zone set is of interest because it establishes a sufficient condition for
a state to not be in the admissible set region of attraction

d ∈ Ddz =⇒ d /∈ D, (5.103)

thus, if d ∈ Ddz, a single-impulse control does not suffice to reach the admissi-
ble set. In that case, if the state is outside the admissible set, the event-based
control Algorithm 3 will trigger the global stable controller. The dead-zone set
may or may not exist as it will be proved in the sequel.

Out-of-plane motion: the out-of-plane dead-zone set is described as

Ddz,y := {dy ∈ R2 | dy /∈ SDy , (dy ⊕Fdz/sat,y) ∩ SDy = ∅,
(dy ⊕Fdz,y) ∩ SDy ̸= ∅},

(5.104)

where the Minkowski sum (⊕) has been employed to add the out-of-plane
reachable sets over one period, Fdz/sat,y and Fdz,y, to the current state. For
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the states within the dead-zone set and during one orbital period, it is only
possible to reach the admissible set with a single-impulse below the minimum
impulse bit. Using the Minkowski sum, the out-of-plane region of attraction
(see Eq. (5.58)) can also be expressed as

Dy = SDy ⊕Fdz/sat,y. (5.105)

The direct addition of the reachable state to the admissible set is possible
because Fdz/sat,y is independent of the state dy (see Eq. (5.89)). Since the
out-of-plane reachable set is the region enclosed between an inner and outer
ellipse in the ∆d4∆d5 space, which is a closed region, it can be deduced that

{∃dy ∈ ∂SDy : SDy ∩ (dy + Fdz/sat,y) = ∅} ⇐⇒ Ddz,y ̸= ∅, (5.106)

which implies the existence of the dead-zone set if and only if the out-of-plane
reachable set does not intersect the admissible set from any of its boundary
points. This is a consequence of the Minkowski sum between a closed re-
gion Fdz/sat,y and a convex bounded set SDy in Eq. (5.105). The result of
this sum would enclose the admissible set but depending on the reachable set
empty interior size, a region (dead-zone set) between the admissible set and
the Minkowski sum result (region of attraction) arises or not. In that sense,
it can be deduced that the existence of the dead-zone set mainly depends on
the minimum impulse bit ∆V . If the minimum impulse bit is high, the inner
ellipse of Fdz/sat,y (see Eq. (5.89)) enlarges until a point where it is larger than
the admissible set.

To illustrate the previous result, let consider the circular orbit case e = 0.
Then, both the out-of-plane admissible set SDy and the interior region of the
state increment reachable set Fdz/sat,y are circles of radius max(|y|, |y|) and
∆V /k2 respectively. In this case, the dead-zone set existence condition of
Eq. (5.106) is satisfied if the radius of the reachable set doubles that of the
admissible set such that ∆V > 2k2max(|y|, |y|).

Let consider an example for a leader orbit with a = 7011 km and e =
0.004. Let assume the out-of-plane hovering region bounds as y = −25 m and
y = 25 m, and the dead-zone/saturation thresholds as ∆V = 7.5 cm/s and
∆V = 10 cm/s. In Fig. 5.4, the geometrical situation (constrained reachable
set Fdz/sat,y, dead-zone reachable set Fdz,y and admissible set SDy) of the out-
of-plane admissible set reachability over one period is shown for two relevant
cases. In the left image, the out-of-plane state is dy = [−50, 50]T and it can be
seen that the out-of-plane constrained reachable set (over one period) intersects
the admissible set. This state lies on the admissible set region of attraction Dy

and has instantaneous reachability opportunities over one orbital period. On
the other hand, in the right image, the out-of-plane state is dy = [−25, 25]T and
the constrained reachable set over one period does not intersect the admissible
set. Consequently, that state does not belong to the region of attraction to
the admissible set. Note that, the dead-zone set intersects the admissible set
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which shows that lower values of the minimum impulse bit ∆V would make
this state to lie in the region of attraction Dy.

Let briefly show how the minimum impulse bit may affect the admissible set
reachability. For the previous scenario, Fig. 5.5 plots the out-of-plane region
of attraction Dy, dead-zone Ddz,y and admissible SDy sets. In the left image,
for ∆V = 0.1 cm/s, the region of attraction surrounds the admissible set on
its totality and no dead-zone set arises. On the contrary, in the right image
for ∆V = 7.5 cm/s there exists a gap between the region of attraction and the
admissible set corresponding to the dead-zone set. This highlights the influence
of the minimum impulse bit in the existence of the out-of-plane dead-zone
set. Actually, for the out-of-plane case, this is the unique parameter driving
the dead-zone existence. If there is no minimum impulse bit constraint, that
is ∆V = 0, then Ddz,y = ∅ due to the Minkowski sum of a convex set with
another convex set as per Eq. (5.105). This would make the region of attraction
to surround the admissible set on its totality as in the left image.

Figure 5.4: Geometry of the out-of-plane admissible set reachability
over one period: reachable (left) and unreachable (right).

In-plane motion: using the previous notation, the in-plane dead-zone set
can be defined as

Ddz,xz(d0) := {dxz ∈ R4 | dxz /∈ SDxz ,

(dxz ⊕Fdz/sat,xz(d0)) ∩ SDxz = ∅,
(dxz ⊕Fdz,xz(d0)) ∩ SDxz ̸= ∅},

(5.107)

and the region of attraction as

Dxz(d0) = SDxz ⊕Fdz/sat,xz(d0). (5.108)

It should be noted that these sets explicitly depends on the in-plane state as d0
has an influence on Eq. (5.22) in-plane impulse. Nonetheless, this dependency
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Figure 5.5: Out-of-plane region of attraction, dead-zone and admissi-
ble sets: non-existent dead-zone set (left) and existing dead-zone set
(right).

can be eliminated if the quasi-periodic state assumption is done, then

Ddz,xz :≈ {dxz ∈ R4 | dxz /∈ SDxz , (dxz ⊕Fdz/sat,xz) ∩ SDxz = ∅,
(dxz ⊕Fdz,xz) ∩ SDxz ̸= ∅},

(5.109)

and
Dxz ≈ SDxz ⊕Fdz/sat,xz if |d0| ≈ 0, (5.110)

where the in-plane constrained and dead-zone reachable sets approximations
has been employed (see Eq. (5.101) and Eq. (5.100)).

In this case, the Minkowksi sum, producing the region of attraction Dxz, is
composed of a convex closed set SDxz and a portion of a conic surface Fdz,sat,xz

given by Eq. (5.100). Consequently, since a cone is an open surface, it could
not be guaranteed that the region of attraction encloses the admissible on
its totality even if ∆V = 0. Then, the admissible set unreachability by an in-
plane single-impulse control could arise due to the combination of the minimum
impulse bit and the problem geometrical configuration.

Let analyze an example to assess the previous statement. Let consider a
leader on an orbit with a = 7011 km and e = 0.004. Let assume the in-plane
hovering region bounds as {x, x, z, z} = {50, 150,−25, 25} m and the impulse
thresholds as ∆V = 3 cm/s and ∆V = 10 cm/s. Figure 5.6 shows the con-
strained Fdz/sat,xz and dead-zone Fdz,xz reachable sets over one period as well

as the admissible set SDxz . In the left image, dxz = [0, 17.5, 17.5, 150]T , it is
seen that the in-plane constrained reachable set over one period intersects the
admissible set. Then, the previous state belongs to the admissible set region of
attraction. On the contrary, in the right image for dxz = [0, 17.5, 17.5, 110]T ,
the constrained reachable set over one period does not intersect the admissible
set. It can be concluded that the previous state does not belong to the admissi-
ble set region of attraction. In this case, it can also be seen that the dead-zone
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set over one period intersects the admissible set. This points out that a lower
minimum impulse bit would make this state belong to the admissible set region
of attraction. However, observing the constrained reachable set over one pe-
riod geometry in Fig. 5.6, it is also deduced that a subset of the in-plane space
d1d2d3 would not belong to the admissible set region of attraction regardless
of the minimum impulse bit ∆V (e.g. imagine displacing the cone over the
space).

For the previous scenario, Fig. 5.7 shows the boundaries of the admissible
set SDxz and its region of attraction Dxz over one period. In that case, the
minimum impulse bit was varied from ∆V = 0.1 cm/s (left image) to ∆V =
3 cm/s (right image). In the left image, the region of attraction encloses on its
totality the admissible set. However, in the right panel, the region of attraction
does not encloses the region around the admissible set neck. As a consequence,
for the right image, a state escaping the admissible set from that neck would
not be able to return with a single-impulse control. It has been demonstrated
that this degraded situation for the single-impulse control mainly depends on
the minimum impulse bit.

Figure 5.6: Geometry of the in-plane admissible set reachability over
one period: reachable (left) and unreachable (right).

Invariance of the admissible set and its region of attraction

Using the previous results and definitions, this section demonstrates the invari-
ance for the union of the admissible set and its region of attraction.

For the system (5.78), the invariance condition can be expressed as

d(ν0) = d0 ∈ D ∪ SD =⇒ d(ν) ∈ D ∪ SD, ν ≥ ν0. (5.111)

This means that a state in the vicinity of the admissible set is ensured to be
steered to it after some finite time, thus the following assumption must be
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Figure 5.7: In-plane region of attraction, dead-zone and admissible
sets: non-existent dead-zone set (left) and existing dead-zone set
(right).

satisfied.

Assumption 5.5.3. Every state in the admissible set neighborhood can reach
the admissible set through an unconstrained single-impulse over a leader orbital
period.

In other terms, it is required that each state d in the vicinity of SD fulfils
(d ⊕ F∞) ∩ SD ̸= ∅. Note that F∞ = F∞,xz × F∞,y is the unconstrained
reachable set in terms of the state increment. It was demonstrated that F∞,y

is the whole space R2, (see Eq. (5.91)) while F∞,xz is a conic surface (see
Eq. (5.96)).

Remark 5.5.1. If assumption 5.5.3 is not satisfied for some states in the
close vicinity of the admissible set, those states do not belong to its region
of attraction by definition. Consequently, there exist escape trajectories from
the admissible set without any opportunity, over a leader orbital period, to
be steered back to the admissible set with a single-impulse control. In such
condition, the admissible set invariance can not be guaranteed.

Even though the admissible set is formally defined with null dynamics (d0 =
0 =⇒ ḋ = 0) in the vector of parameters space, due to small errors the
periodicity state will tend to the quasi-periodicity |d0| ≈ 0 =⇒ ḋ ̸= 0. This
fact would potentially lead to trajectories escaping from the admissible set.
In order to proof the invariance result, the dead-zone set, Ddz , needs to be
employed. From the previous paragraph, this set is defined as the set of states
whose admissible set reachability opportunities over a 2π period fall below the
minimum impulse bit. This set was proven to exist or not depending on the
problem parameters (mainly the minimum impulse bit ∆V ).
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Theorem 1. Let consider the impulsive dynamical system (5.78). Let define
the set M = D ∪ SD as the union of the admissible set and its region of
attraction. If the dead-zone set over one period is empty, Ddz = ∅, then for
d(ν0) ∈M, it holds that d(ν)→M as ν ≥ ν0.

Proof. Let recall the assumption 5.5.3 which states that for every state in
the admissible set vicinity, it is possible to apply an unconstrained control
steering the state back to the admissible set over the next leader orbital period:
(d⊕ F∞) ∩ SD ̸= ∅. For states which are very close to the admissible set, the
control would be small enough so that (d ⊕ Fdz) ∩ SD ̸= ∅. At this point,
two cases are possible depending if the set (d⊕Fdz/sat) ∩ SD is empty or not.
Recalling that from Eq. (5.102), Eq. (5.104) and Eq. (5.107), the dead-zone set
is described as

Ddz = Ddz,xz ×Ddz,y

:= {d ∈ R6 | (d⊕Fdz) ∩ SD ̸= ∅ ∧ (d⊕Fdz/sat) ∩ SD = ∅}.
(5.112)

Then, if the dead-zone set is empty Ddz = ∅, any state in the admissible set
closest neighbourhood verifies (d ⊕ Fdz/sat) ∩ SD ̸= ∅. In other terms, the
closest neighbourhood of the admissible set belongs to its region of attraction
as

∂D ∩ ∂SD = ∂SD. (5.113)

Accordingly, every escape trajectory from the admissible set is guaranteed to
enter the region of attraction. Noting that, by the event-based controller of
Algorithm 3), a single-impulse control instantaneously reaching the admissi-
ble set would be triggered. Then, it is concluded that the admissible set is
attractive for the states on its vicinity which terminates the proof.

Theorem 1 indicates that, under the event-based control trigger rules of
Algorithm 3, the union setM = D ∪ SD is invariant under the single-impulse
control.

Remark 5.5.2. If the dead-zone set is non-empty, some states at the admissi-
ble set boundary belong to the dead-zone set. Consequently, the admissible set
closest neighborhood does not belong to its region of attraction ∂Ddz ∩ ∂SD ̸=
∅ =⇒ ∂D ∩ ∂SD ̸= ∂SD and ∂Ddz ∩ ∂SD ̸= ∅. Under the previous scenario,
there exist trajectories escaping from the admissible set that will not directly
enter into the region of attraction. Therefore, the invariance of the union set
M = D∪SD is not ensured for the single-impulse control. Such condition will
require the execution of a global stable control for the admissible set.

5.5.3 Invariance under the presence of continuous disturbances

Next, the hybrid impulsive system of Eq. (5.78) is modified to account for
continuous disturbances as

d′(ν) =AD(ν)d(ν) + aD(d, ν), d0 ∈ D ∪ SD, (d, ν) /∈ Z,
∆d(ν) =BD(ν)∆V(ν), (d, ν) ∈ Z, (5.114)
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where aD(ν,d) ∈ R6 is an unknown Lipschitz continuous disturbance function
(perturbing acceleration term transformed to the vector of parameters space).
This function is assumed to behave in a way such that it does not modify
the validity of the Assumptions 5.5.1-5.5.2 guaranteeing the well-posedness
of the resetting set. The invariance under continuous disturbances can only
be ensured if Theorem 1 conditions hold. In that case, the admissible set is
attractive and the union set,M is an invariant set if the effect of the continuous
disturbance function aD is bounded as

φν,ν0
D (d0) ∈M for d0 ∈ SD, ν ∈ [ν0, ν0 + 2π], (5.115)

where φν,ν0
D : R6 → R6 is the bundle of flow trajectories under the continuous

disturbances system (5.114). In other words, to ensure the validity of The-
orem 1, the effect of the disturbances has to be weak enough such that the
admissible set instantaneous reachability windows are not suddenly closed (be-
fore they open) within the next orbital period. As a matter of fact, remaining
in the admissible set region of attraction, D, ensures that an opportunity will
raise during the next orbital period as the resetting set, Z, is contained in
the region of attraction Z ⊂ D. Nonetheless, the case where the disturbance
effect is strong enough to drift the state outside the region of attraction is also
probable.

5.6 Numerical results

This section validates the proposed event-based controller for spacecraft ren-
dezvous hovering phases. The simulations consider the Earth’s oblateness and
the atmospheric drag as continuous disturbances. The impact of the target
eccentricity, the minimum impulse bit and the saturation threshold is assessed
individually. A comparison between the aperiodic event-based algorithm and
a periodic implementation of the global stable controller is carried out and dis-
cussed. The simulations has been done in a MATLAB software environment.

5.6.1 Simulation model and controller parameters

The relative motion simulator of [Arantes-Gilz16] is employed. This simulator
includes non-linear Keplerian relative dynamics with Earth’s oblateness and
atmospheric drag effects for both leader and follower. More precisely, the
simulator dynamics is

ρ̈ρρ = −ωωωL/I × ρρρ− 2ωωωL/I × ρ̇ρρ−ωωωL/I ×ωωωL/I × ρρρ− µ(rt + ρρρ)

∥r+ ρρρ∥32
+

µrt
r3t

+∆agrav,J2 +∆adrag,

ρ̇ρρ+(tk) = ρ̇ρρ(tk) + ∆V(tk),

r̈t(t) = −
µrt(t)

r3t (t)
+ agrav,J2(rt(t)) + adrag(rt(t), ṙt(t)),
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where the time and state dependencies has been omitted at the right-hand
side of the relative motion equation for the sake of clarity. The terms ∆agrav,J2
and ∆adrag are the differential non-Keplerian gravity and atmospheric drag
between the follower and leader. The non-Keplerian gravity and atmospheric
drag are modelled according to Eq. (2.14) and Eq. (2.21) respectively. The
non-Keplerian gravity only considers the Earth’s oblateness (the equatorial
radius is higher than the polar one), thus nmax = 2 with C̃20 = −J2/

√
5 and

C̃21 = C̃22 = S̃21 = S̃22 = 0.

The Earth’s gravity parameters are µ = 398600.4 km3/s2 and J2 = 1.08264·
10−3 with a normalization radius of R = 6378.14 km. The ballistic coefficients
for leader and follower are chosen in the same order of magnitude for a space
station (e.g. ISS) and a cargo spacecraft (e.g. automated transfer vehicle)
respectively. That is B = 175.90 kg/m2 and Bt = 139.80 kg/m2.

For all the simulations, the initial orbital elements of the leader are {hp,0 =
650 km, i0 = 98◦, Ω0 = ω0 = ν0 = 0◦} while the follower departs from ρρρ0 =
[400, 300,−40]T m with ρ̇ρρ0 = 0 m/s. The leader’s perigee altitude hp is fixed
while the leader eccentricity is varied. The hovering region is characterized by
a cuboid bounded by {x = 50, x = 150, y = −25, y = 25, z = −25, z = 25}m.
Note that the origin (target position) is not within the hovering region due to
the chosen cuboid bounds along the in-track coordinate. This precludes the
follower to collide with the leader by design. The initial relative position is not
within the hovering region, thus each simulation carries out an initial approach
phase by using the global stable controller of Algorithm 7 (see Appendix D).
When a constrained relative periodic orbit within the hovering region is ac-
quired, the hovering phase (which is the scope of this work) begins. For each
simulation, the hovering phase lasts during ten leader orbits. The leader initial
eccentricity, e0, minimum impulse bit, ∆V , and saturation threshold ∆V are
the parameters that will be analyzed in the sequel.

For the event-based controller, the trigger rules are evaluated at a sampling
rate of ∆ν = 1◦. The admissible set proximity thresholds are generically
taken as (δxz = −3, δy = −100) though more reactive thresholds will also be
studied. The number of discrete evaluations for the membership to the region
of attraction (see Eq. (5.62)) is chosen as nν = 100. For the global stable
controller, the tuning parameters are the number of impulses N , their spacing
in time τI and the spacing between impulses sequences τP . These are nominally
taken as N = 3, τI = 30◦ and τP = 5◦, though the spacing between impulses
τP will be varied for some simulations.

5.6.2 Impact of the leader eccentricity

The leader eccentricity has a relevant role in the linearized Keplerian relative
dynamics through the state and control matrices, AD and BD, (see Eq. (2.45)-
(2.46)) and the admissible set SD description (see Eq. (5.6)-(5.11)). To analyze
its impact, 50 initial eccentricities of the leader are simulated. The dead-zone
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and saturation values are chosen as ∆V = 0.1 cm/s and ∆V = 10 cm/s.

The follower relative position, under the event-based controller, is shown
for several leader eccentricities, e0 = {0, 0.2, 0.4, 0.6}, in Fig. 5.8-5.11. For the
sake of clarity, these figures focus on the hovering phase as the approach phase
has been by the global stable controller of Algorithm 7 (see Appendix D). The
follower relative position is within the hovering region except for some instants
in the case e0 = 0.6 (see the upper left corner of Fig. 5.11). However, it can
be observed that the follower returns naturally to the hovering region, thus it
can be concluded that the relative state was within the region of attraction
(which assures that instantaneous reachability windows admissible set reacha-
bility opportunities over the next leader orbital period).

The admissible set proximity indicators evolution and triggered impulses
are shown in Fig. 5.12-5.13 for e0 = {0, 0.6}. It can observed that the admissi-
ble set proximity indicators evolve quasi-periodically which confirms the quasi-
periodic assumption |d0| ≈ 0. The admissible set proximity indicators are also
continuous (except at the instants when impulses are executed) which guaran-
tees that reachability opportunities does not vanish instantaneously. However,
for the most eccentric case, e0 = 0.6 (see Fig. 5.13), the relative motion at the
leader perigee induces fast changes in the proximity indicators which is often-
times be poorly captured by the trigger rules evaluation sampling rate. This
may indicate that the sampling rate should be increased for highly-eccentric
orbits.

Figure 5.14 counts the event-based algorithm triggers to the single-impulse
and global stable controllers for the hovering phase. The single-impulse triggers
ranges between 6-19 with an average of 10.3 events. The global stable controller
is not called in all the simulations. In other terms, for the scenario conditions,
the single-impulse control permits to not lose track of the admissible set. This
illustrates the robustness and invariance of the region of attraction D to the ad-
missible set even in the presence of continuous disturbances (non-linear model,
Earth oblateness and atmospheric drag).

Now, let compare the baseline event-based predictive controller with a
highly-reactive version of itself and with the global stable controller. The highly
reactive event-based controller decreases the trigger thresholds to δxz = −300
and δy = −104. This assures the triggering of impulses regardless of the admis-
sible set proximity indicators as it can be deduced from the values in Fig. 5.12-
5.13. The global stable controllers trigger impulses in a periodic way. Two
versions of the previous controller are tested by probing two distinct values for
the spacing between impulses as τI = {5◦, 30◦}. The results of this comparison
are shown in Fig. 5.15-5.17.

For each controller, the percentage of time the hovering region constraints
are satisfied (that is ρρρ ∈ Xhov) is shown in Fig. 5.15. In this context, this is
named as the control accuracy. Let recall that the objective of the hovering
phase (see the problem (5.1)) is just to ensure that the relative state lies within
the hovering region. In that line, the membership of the relative state within
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Figure 5.8: Hovering phase trajectory for e0 = 0.
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Figure 5.9: Hovering phase trajectory for e0 = 0.2.
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Figure 5.10: Hovering phase trajectory for e0 = 0.4.
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Figure 5.11: Hovering phase trajectory for e0 = 0.6.
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Figure 5.12: Admissible set proximity indicators and triggered im-
pulses for e0 = 0.
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Figure 5.13: Admissible set proximity indicators and triggered im-
pulses for e0 = 0.6.
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Figure 5.14: Triggers of the event-based predictive controller for dif-
ferent initial eccentricities of the leader.
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the admissible set ensured the follower relative position is within the hovering
region. Going back to Fig. 5.15, the event-based controller shows its superiority
with an accuracy over 96.00% (97.91% for its highly-reactive version) in almost
all the cases with an average of 98.66% (99.62% for its highly-reactive version).
The periodic global stable controllers provide average results of 95.43% and
91.38% for τI = 5◦ and τI = 30◦ respectively. These differences may be
relevant as a one-percent of constraints violation ranges from ≈ 10 minutes
(if e0 = 0) to ≈ 40 minutes (if e0 = 0.6) in time. Let recall that the leader
perigee has been fixed, thus the semi-major axis and orbital period increase
with eccentricity. The periodic global stable controllers loss of accuracy, with
respect to the event-based algorithm, is due to two causes. Firstly, the global
controller does not guarantee constraints satisfaction between the application
of impulses. Lastly, the global controller does not explicitly account for the
thrusters minimum impulse bit ∆V . Consequently, most of the computed
controls are not executed due to the dead-zone filtering as per Algorithm 7
(computed impulses below the minimum impulse bit are filtered by nullifying
them a-posteriori).

Following the previous discussion, Fig. 5.16 shows the number of executed
impulses for each one of the controllers. It should be noted that the global
stable controllers compute 723 and 203 impulses (triangles in the upper part
of the figure) during the hovering phase. The previous number depends on
the spacing between impulses τI but not on the leader eccentricity. However,
only 3 to 21 of them are above the minimum impulse bit. On the contrary,
the event-based controller computes 6 to 19 single-impulses for the nominal
case while the highly-reactive controller usually triggers 2 impulses more in
average. It is worth noting that the number of applied impulses is of the same
magnitude for all the controllers.

The fuel consumption, as the sum of the impulses L1-norm, is shown in
Fig. 5.17. The cost is plotted for both the event-based controller and the global
controllers with (w. ∆V ) and without (w/o. ∆V ) the filtering of the minimum
impulse bit. For the instances without minimum impulse bit filtering, only the
computed consumption is shown. It can be observed that the event-based
controller cost is almost equivalent to the ones of the global stable controllers.
More precisely, the event-based controller consumes, at most, less than 4.5 cm/s
for 0 ≤ e0 ≤ 0.1, and typically less than 2 cm/s for e0 > 0.1. Similar results
are yielded by taking the highly-reactive thresholds as they assure less than
3 cm/s for 0 ≤ e0 ≤ 0.1 and the same performance for e0 > 0.1 in average. It
can be concluded that the the event-based and global stable controllers have a
similar overall performance in terms of fuel consumption needs.

Now, let assess the numerical efficiency of the event-based controller with
respect to the global stable algorithm. The event-based algorithm computa-
tional load comes from the evaluation of the trigger rules in Algorithm 3 and
the computation of the control programs (5.66), (5.70) or (5.76) when triggered.
The elapsed computation times of these modules are shown in Table 5.1. It is
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Figure 5.15: Satisfaction of the hovering region constraints for differ-
ent initial eccentricities of the leader.
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Figure 5.17: Fuel consumption for different initial eccentricities of the
leader.

found that the most time-consuming task is the evaluation of the trigger rules
which takes 5.895 ms in average. In comparison, the computational times of
the control programs are negligible with averages of 0.0299 ms and 0.1314 ms
respectively. One can notice that the worst computational time of the trigger
rules evaluation highly differs from the mean. This is due to the cases where
the state membership to the region of attraction has to be assessed through
the computation of Eq. (5.62) condition.

Mean 1-sigma Max.

Trigger rules 5.895 ms 15.91 ms 118.6 ms
In-plane control 0.0299 ms 0.0624 ms 0.5813 ms
Out-of-plane control 0.1314 ms 0.0299 ms 0.4824 ms

Table 5.1: Event-based predictive controller computation times.

Table 5.2 shows the cumulated computation time for each one of the con-
trollers along the hovering phase. The cumulated computation time for the
event-based controller is between 6 and 79 seconds, whilst, the global stable
controller takes between 223 and 266 seconds for τI = 5◦, and between 60 and
72 seconds for τI = 30◦. It can be concluded that the event-based algorithm
highly reduces the computational burden with respect to the global stable con-
trollers. This superiority of the event-based control is justified by the fact that
at five times (∆ν = 1◦) the global controller sampling rate (τI = 5◦), the event-
based controller computational load is ten times lower in average. By selecting
τI = 30◦, the global controller computational times are still three times higher
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than the event-based algorithm. Note that increasing the sampling rates, in
order to reduce computational burden, has a negative impact on the control
accuracy as demonstrated through Fig. 5.15.

Controller Mean 1-sigma Max.

Event-based 21.223 s 13.831 s 79.128 s
Global stable τI = 5◦ 245.60 s 11.231 s 265.84 s
Global stable τI = 30◦ 66.500 s 3.143 s 72.191 s

Table 5.2: Cumulated computation times for the hovering phase.

To resume, the comparison between the developed event-based predictive
control (see Algorithm 3) and the global stable controller (see Algorithm 7 in
Appendix D or [Arantes-Gilz19]) has evidenced the superiority of the event-
based approach for certain aspects without disadvantages. In particular, the
event-based controller always performed better in terms of control accuracy
and computational burden within the range of analyzed initial eccentricities
of the leader. Regarding the number of impulses and fuel consumption, it
yielded similar results than the global stable controllers. This justifies the use
of a local single-impulse control law for spacecraft rendezvous hovering phases.
The reactivity of the event-based controller can also be adjusted by tuning the
trigger thresholds (or by not awaiting for the proximity indicators to shrink)
which showed a positive impact in terms of control accuracy at the expense of
augmenting the number of executed impulses.

5.6.3 Impact of the impulse thresholds

The minimum impulse bit (∆V ) and saturation threshold (∆V ) may have a
significant impact in the size of the region of attraction to the admissible set. As
a matter of fact, these parameters (which depend on the chosen thrusters for the
hovering phase) constrain the control lines where the state can instantaneously
change.

Minimum impulse bit

As outlined in Section 5.5.2, the minimum impulse bit can change significantly
the geometrical shape of the region of attraction (see Fig. 5.5 and Fig. 5.7).
This has an impact on the event-based controller as defined in Algorithm 3.
Let carry out a parametric analysis on ∆V for a fixed initial eccentricity of the
leader , e0 = 0.004, and saturation threshold, ∆V = 10 cm/s. The analysis is
done by simulating 50 instances where the minimum impulse bit ∆V is varied
logarithmically between 0.01 cm/s and 1 cm/s. The analyzed variables (see
Fig. 5.18-5.19) are the satisfaction of the hovering region constraints (in terms
of time), fuel consumption and the triggered control law.
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Figure 5.18 shows the fuel consumption (in terms of the total velocity in-
crement) and the percentage of time where the hovering region constraints are
satisfied. The time percentage of constraints satisfaction is generally high with
values above 97% (with several cases of 100%). However, no apparent corre-
lations with the minimum impulse bit can be yielded. It seems to be three
regions with almost a 100% of satisfaction while other intermediate regions fall
to a 97-98%. These values could be potentially related to small differences in
the natural trajectories after the application of the first impulse. Augmenting
the minimum impulse bit has a negative impact on fuel consumption. There
is an increasing trend in the total ∆V as the dead-zone is enlarged. Actually,
the fuel consumption increases by four from the minimum to the maximum
dead-zone threshold. Let recall that as the minimum impulse bit increases, the
magnitude of the computed impulse is higher.

The event-based controller triggers are shown in Fig. 5.19. They show
a decreasing trend as the minimum impulse bit increases. This makes sense
as enlarging the dead-zone region reduces the number and duration of the
instantaneous reachability windows. For the considered range of minimum
impulse bits, no calls to the global stable controller were needed but it is
evident that increasing it indefinitely would switch single-impulse strategy to
the global stable control.
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Figure 5.18: Satisfaction of the hovering region constraints and fuel
consumption for several minimum impulse bits.

Saturation threshold

Now, let analyze the effect of the saturation threshold ∆V . Mimicking the
previous study, let assume fixed values for the initial eccentricity of the leader
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Figure 5.19: Triggers of the event-based predictive controller for sev-
eral minimum impulse bits.

e0 = 0.004 and the minimum impulse bit ∆V = 0.1 cm/s. Then, fifty sim-
ulations of the saturation threshold ∆V logarithmically equispaced between
1 mm/s and 0.1 m/s are carried out. Again, the fuel consumption, event-based
triggers and satisfaction of the hovering region constraints are presented in
Fig. 5.20-5.21.

In Fig. 5.20, it is shown the fuel consumption (in terms of the total velocity
increment) and the percentage of time where the hovering region constraints
are satisfied. The fuel consumption generally increases as the saturation is
enlarged. Actually, from ∆V = 1 cm/s the total ∆V remains invariant. This
highlights that the tight upper bound constraint on the impulse amplitude
causes it to be lower, thus the fuel consumption is keep low (but at the expense
of a loss in control accuracy as it will be highlighted). Moreover, from a certain
value of the saturation threshold, there are no saturated impulses and the fuel
consumption remains the same. The constraints satisfaction generally increases
as the saturation threshold is enlarged until a steady value is obtained. This
tendency is highly correlated with the low fuel consumption and the calls to
the global stable controller for the lower saturation thresholds. The analysis of
the saturation threshold may help to determine the minimum required power
of the control thrusters in order to obtain an invariant control behaviour.

Additionally, Fig. 5.21 shows that the global stable controller has been often
triggered. Specifically, this occurs for low values of the saturation amplitude
which may reduce significantly the size of the single-impulse region of attraction
to the admissible set. Then, from the previous mentioned value of ∆V = 1 cm/s
the number of triggers is steady and the same results are obtained.
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Figure 5.20: Satisfaction of the hovering region constraints and fuel
consumption for several saturation thresholds.
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Figure 5.21: Triggers of the event-based predictive controller for sev-
eral saturation thresholds.
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Chapter 6

Learning-based model
predictive control in the
vicinity of a small body

It does not do to leave a live
dragon out of your calculations, if
you live near him.

J.R.R. Tolkien, The Hobbit
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This chapter develops a learning-based model predictive control scheme for
orbit-attitude station-keeping in the vicinity of a small body. Maintaining a
closed orbit in the vicinity of a small body is challenging due to its inhomoge-
neous gravity field. This orbital perturbation could degenerate a initial circular
orbit into a escape or collision trajectory (see Fig. 6.1-6.2). In order to pre-
clude this phenomena, stable orbits can be found with a stability analysis of the
small body dynamical environment (e.g. [Scheeres12]). Nonetheless, in many
cases, the small body gravity field is unknown at the early mission phases. In
such situation, active control should be employed to avoid escape or collision
trajectories. Under the previous considerations, the goal of this work is to
design a closed-loop MPC for orbit-attitude station-keeping while undertaking
the in-situ estimaton of the inhomogeneous gravity field. The methodology
and associated results have been submitted as a journal article [Sanchez20c]
and have been presented in a conference [Sanchez21b].

This work considers a high resolution camera, a light detection and rang-
ing device (LIDAR), star trackers and gyroscopes as available on-board sen-
sors. The star trackers and gyroscopes are able to provide measurements of
the body orientation and angular velocity with respect to inertial space. The
high resolution camera and LIDAR provide relative measurements with respect
to landmarks. The landmarks are identified features from the initial mission
phases (a fly-by or a high-orbit), as pixels, in the surface of the small body
[Miller90]. The previous set of measurements (being its acquisition and pro-
cessing out of the scope of this work) is employed for both the orbit-attitude
determination and the inhomogeneous gravity field estimation. To this end,
separate unscented Kalman filters for both the orbit and attitude cases have
been developed.

The high resolution camera and LIDAR devices require continuous line-of-
sight with the small body surface in order to acquire relative measurements
[Li05, Hesar15]. Accordingly, the spacecraft needs to spin with the same rate
of its orbital motion. For a circular orbit, under Keplerian motion, this can be
enforced using passive gravity-gradient stabilization by choosing the satellite
inertia to lie within the stable region. Unfortunately, in an inhomogeneous
gravity field the gravity-gradient stable regions may differ from the Keplerian
case depending on the gravity parameters [Wang13]. It may be also the case
where it is not possible, in terms of the whole mission, to explicitly choose the
inertia configuration enabling gravity-gradient stabilization. As a consequence,
closed-loop attitude control has to be used in order to ensure the line-of-sight
between the high resolution camera and LIDAR with the small body surface.

The overarching control goal translates to maintain a circular orbit and a
stationary orientation with respect to the asteroid surface. To this end, a refer-
ence tracking approach is followed. This allows to pose the control optimization
as a quadratic program by linearizing the dynamics around the reference and
discretizing the problem over time. By joining the reference tracking MPC with
the unscented Kalman filters, a learning-based control strategy is obtained. Ini-
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tially, the control is inaccurate due to the poor knowledge of the gravity model.
Nonetheless, the filter convergence (as the gravity estimates are more accurate)
improves the accuracy of the model predictive control [Hewing20].

In order to speed up the gravity model estimation process, a satellite con-
stellation concept is studied. Having multiple spacecraft simultaneously esti-
mating its own gravity parameters offers the opportunity to gather, process
and compute a centralized estimation for all the constellation. Finally, nu-
merical simulations are carried out for a 433 Eros asteroid exploration. The
results show the superior control accuracy of the learning-based MPC against
a non-learning MPC. The gravity estimation of the satellite constellation is
demonstrated to speed up the convergence of the gravity estimation process
with respect to single satellites.

Figure 6.1: Escape trajectory due to 433 Eros inhomogeneous gravity
field.

6.1 Orbit-attitude station-keeping problem

This section is devoted to present the orbit-attitude station-keeping problem.
Firstly, useful frames of reference, that will be employed along this chapter, are
defined. Then, the continuous form of the station-keeping problem is stated.
The objective of this problem is to maintain a circular orbit with a stationary
attitude relative to the small body.

6.1.1 Frames of reference

In order to understand the problem, the following frames of reference are de-
fined. These are depicted in Fig. 6.3.
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Figure 6.2: Collision trajectory due to 433 Eros inhomogeneous grav-
ity field.

• Asteroid centered inertial frame (I): its origin is the asteroid center of
mass O. The direction kI is aligned with the asteroid rotation axis while
iI and jI are fixed directions, with respect to inertial space, contained in
the asteroid equatorial plane.

• Asteroid centered fixed frame (A): its origin is the asteroid center of
mass O. This frame rotates with angular velocity ωωωA/I = [0, 0, ωA]

T

with respect to the inertial frame. Then, the direction kA is aligned with
the asteroid rotation axis which is coincident with its major inertia axis
(as it is the case for the majority of small bodies). The directions iA and
jA are aligned with the remaining principal axes of inertia defining the
asteroid equatorial plane. The rotation matrix from the inertial to the
asteroid frame is given by

RA
I =

 cos(ωAt+ θA) sin(ωAt+ θA) 0
− sin(ωAt+ θA) cos(ωAt+ θA) 0

0 0 1

 , (6.1)

where θA is the initial phasing angle.

• Local orbital frame (O): its origin is the satellite center of mass r. It is
constructed as follows

iO =
r

∥r∥2
, jO =

kO × iO
∥kO × iO∥2

, kO =
r× ṙ

∥r× ṙ∥2
, (6.2)

where iO is the radial direction pointing from the asteroid center of mass
to the satellite. The out-of-plane direction kO is aligned with the satellite
angular momentum. The in-track direction jO closes the right-handed
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frame. The rotation matrix from the inertial to the orbit frame is given
by

RO
I = [iO | jO | kO]

T . (6.3)

• Body frame (B): its origin is the satellite center of mass r. Its directions
{iB, jB,kB} are aligned with the satellite principal inertia axes. This fact
causes the satellite inertia matrix J to be constant in this frame. This
frame can be related to the inertial or orbital frames through its cor-
responding modified Rodrigues parameter, σσσB/I and σσσB/O respectively.
Using the formula given by Eq. (2.87), the respective rotation matrices
can be computed as RB

I ≡ R(σσσB/I) and RB
O ≡ R(σσσB/O).

• Camera frame (C): its origin is the satellite center of mass r. It is
attached to the satellite since its kC direction indicates the focal direction
of the high resolution camera. It is arbitrarily chosen kC = −xB, such
that

RC
B =

 0 0 1
0 1 0
−1 0 0

 . (6.4)

Figure 6.3: Asteroid, body, inertial and orbital reference frames.
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6.1.2 Station-keeping problem

The considered station-keeping problem aims to maintain a closed orbit with
a stationary attitude with respect to the small body surface. By doing so, the
camera is guaranteed to have direct line-of-sight with the small body. The
orbit must be designed so that it does not collide with the small body. In
this work, a circular orbit would be targeted due to its simplicity. Since this
requirement is related to absolute motion, the modified equinoctial elements
α̃αα = [p, f, g, h, k, L]T (see Eq. (2.7)) are chosen to parameterize the orbital state.
Let recall that the MEE evolve according to the Gauss variational equations
(see Eq. (2.10)).

Maintaining a stationary orientation with respect to the small body surface
can be translated to keep a stationary orientation of the body B with respect
to the orbital frame O. Let recall that the radial direction iO of the orbital
frame is aligned with the small body and the satellite center of masses. Then,
it is concluded that making the body orientation coincident with the orbital
frame, that is σσσB/O = 0, guarantees camera line-of-sight with the small body
surface since this translates to kC = −iB = −iO. Note that the MRP (see
Eq. (2.86)) would be used to parameterize the different attitudes.

The previous considerations lead to the following station-keeping problem

minimize
u(t),Tu(t)

J(u(t),Tu(t)),

subject to ˙̃ααα = c̃(α̃αα) + Ã(α̃αα)agrav(α̃αα) + Ã(α̃αα)u,

σ̇σσB/O = C(σσσB/O)[ωωωB/I −R(σσσB/O)ωωω
O
O/I ],

Jω̇ωωB/I +ωωωB/I × (JωωωB/I) = Tgrav +Tu,

− u ≤ u(t) ≤ u,

−Tu ≤ Tu(t) ≤ Tu,

Arefα̃αα(t) = bref, t0 ≤ t ≤ tf ,

σσσB/O(t) = 0,

α̃αα(t0) = α̃αα0, σσσB/O(t0) = σσσB/O,0, ωωωB/I(t0) = ωωωB/I,0,

(6.5)

where

Aref =

[
I 03×3

03×3 03×3

]
, bref =

[
ă

05×1

]
. (6.6)

Only the inhomogeneous gravity field perturbation, agrav, has been explicitly
considered because it is the most dominant one in low asteroid orbits. The
term ă is the desired semi-major axis of the circular orbit. Let recall that
the relation between the semi-major axis and eccentricity with the MEE (see
Eq. (2.7)) is a = p/(1 − e2) and e =

√
f2 + g2. Then, in order to maintain a

circular orbit ĕ with a given orbital radius ă, the MEE have to fulfil p̆ = ă and
f̆ = ğ = 0.
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6.2 Navigation with in-situ gravity estimation

This section describes the employed navigation strategy in the vicinity of a
small body. Unlike previous applications of this manuscript where the state
was exactly known, in this case, the state and some model parameters (the ones
related to the small body inhomogeneous gravity field) have to be estimated.
To this end, unscented Kalman filtering [Wan00] is employed. Separate filters
are designed for orbit and attitude respectively. This accounts for the higher
sampling frequencies of attitude sensors with respect to ones related with the
orbital state determination. The navigation measurements are provided by a
high resolution camera, a LIDAR, star-trackers and gyroscopes. The simplified
measurement models of the previous devices are subsequently described (the
details on their own data acquisition and processing are out of the scope of
this dissertation).

6.2.1 Unscented Kalman filter

The UKF mainly relies on the unscented transform (UT) technique. The UT
is a particle-based tool to compute the result of applying a non-linear function
to a Gaussian distribution. The UT approximates the resulting statistical
distribution (which is not Gaussian if the function is non-linear [NRC12]) to a
Gaussian one characterized by a mean and a covariance matrix. Let define an
initial Gaussian distribution as y ∼ Nn(ŷ,ΣΣΣy). Then, let define a generic non-
linear function as f(y) : Rn → Rm. Finally, let define the result of transforming
the initial distribution y with the non-linear function f as z = f(y). Under the
Gaussian assumption the result is statistically characterized by z ∼ Nm(ẑ,ΣΣΣz).
Consequently, the non-linear transformation of the initial function is reduced
to the computation of the new mean ẑ and covariance matrix ΣΣΣz. In order
to do so, it follows a simplified particle-based approach. The particles, named
as sigma points χχχ, are generated by spreading 2n + 1 deterministic samples
around the initial distribution mean

χχχ
[k]
y = ŷ + sgn(k) ·

(√
(n+ λ)ΣΣΣy

)
|k|

, k = −n . . . n, (6.7)

where the subindex |k| denotes each column of the matrix. The scalar λ is a
tuning parameter which controls how spreaded apart from the mean are the
sigma points distributed. Then, the transforming function f is applied to each
one of the sigma points

χχχ
[k]
z = f(χχχ

[k]
y ), (6.8)

which gives the samples of the resulting distribution. Finally, through a
weighted mean, the mean ẑ and covariance ΣΣΣz of the final distribution z are
reconstructed

ẑ =
n∑

k=−n

w[k]
m χχχ

[k]
z , ΣΣΣz =

n∑
k=−n

w[k]
c (χχχ

[k]
z − ẑ)(χχχ

[k]
z − ẑ)T . (6.9)
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The UT process comprises Eq. (6.7)-(6.9). Other state-of-the-art techniques
transforming Gaussian distributions with non-linear functions are the Monte
Carlo method and the extended Kalman filter (EKF). A sketch of these ap-
proaches, along with the UKF, is shown in Fig. 6.4. The Monte Carlo method
transforms a high number of random realizations, which yields a very accurate
result at the expense of a high computational burden. The EKF linearizes
the non-linear function around the initial mean which allows to use analytic
formulas for the mean and covariance propagation. Its main advantage is the
reduction in the computational burden, because only one sample is propa-
gated, though the Jacobian matrix of the system has to be obtained. Its main
drawback is that the linearization may result in inaccurate predictions if the
distribution is spread from the mean. On the other hand, the employed UKF
transformation technique (UT) is usually more accurate than the EKF because
the sigma points propagation is exact as the non-linear function is directly em-
ployed. Moreover, no computation of the Jacobian matrix is required which
simplifies its implementation. The UKF also reduces the high computational
burden of the Monte Carlo approach as only a reduced number of samples is
propagated. Due to the previous fact, it is also less accurate in comparison.

Figure 6.4: Monte Carlo (black), EKF (pink) and UKF (yellow) ap-
proaches for uncertainty propagation.

The UKF aims to recursively obtain an statistical estimation of the state
y ∼ Nn(ŷ,ΣΣΣy) through its mean ŷ and covariance ΣΣΣy. In order to do so, it often
receives a vector of measurements modelled as z ∼ Nm(ẑ,ΣΣΣz) being ẑ its mean
and ΣΣΣz its covariance matrix. The state and measurements are related through
the transformation function g(y) : Rn → Rm. This function transforms the
state to the space of measurements. Along the interval without measurements,
the state and its distribution evolves dynamically (named as process in the UKF
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nomenclature). Let define the process function as f(y) : Rn → Rn. The process
function may not capture the real evolution of the system (e.g. unmodelled
dynamics). Assuming the process errors are not biased, their uncertainty is
simply considered by the addition of the process uncertainty covariance matrix
ΣΣΣf ∈ Rn×n after the process UT. The process uncertainty covariance matrix
is usually an unknown parameter (since it represents the mismatch between
modelling and reality) which has to be tuned or inferred.

Using the previous definitions, the unscented Kalman filter is presented in
Algorithm 4. Given an initial mean ŷ0 and covariance ΣΣΣy0 of the state, the UT
of the previous distribution with the process function f is applied in step 2.
The propagation comprises the duration of the interval between measurements
∆tUKF. The results are the state mean ŷ and covariance ΣΣΣy after the process.
After that, the process uncertainty covariance ΣΣΣf is added to the resulting
state covariance in step 3. The next step 4 applies the UT of the processed
state with the function g transforming the state to the space of measurements.
This yields the expected measurements distribution z′ ∼ Nm(ẑ′,ΣΣΣz′) after the
process. Since the measurements are also uncertain, their covariance matrix
ΣΣΣz is added to the expected one in step 5.

The step 6 computes the cross-correlation matrix H ∈ Rn×m between the
processed state f(y0) and its expected measurements z′. Then, the Kalman
gain K ∈ Rn×m is computed in step 7. The subsequent step 8 uses the Kalman
gain and the vector of measurements z to update the expected estimation
mean ŷ and covariance ΣΣΣy. The update in the state estimation is based on the
mismatch between the current measurements z and the average of the expected
ones z′. Note that the state covariance matrix always diminish.

The steps 2-8 correspond to the standard UKF algorithm as presented in
[Wan00]. However, two additional steps (9-10) have been added with the pur-
pose of updating the process uncertainty ΣΣΣf . Additionally, it is assumed that
the measurements uncertainty ΣΣΣz is characterized by the sensors datasheet,
thus it is a known data. As previously mentioned, the state update is pro-
portional to the discrepancy between the measurements and the mean of the
expected ones from the process. This mismatch can be related to discrepancies
between the process function and the real system dynamics. Then, the pro-
cess mismatch can be quantified by the Kalman innovation as ŵ = K(z − ẑ′)
(see step 9) which is the quantity added to the state in the Kalman update.
Finally, by using the previous Kalman innovation, step 10 updates the process
uncertainty covariance matrix. Following [Akhlaghi17], the process uncertainty
covariance matrix is updated with a fading factor, η ∈ [0, 1], which balances
the importance given to the present innovation with respect to the past history.

The unscented transform, in Eq. (6.9), and the step 6 of the UKF Algo-
rithm 4 require the computation of weighted means with weights wm and wc

respectively. Following the choice of the initial work [Wan00], these weights
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Algorithm 4: UKF with process noise estimation

1 begin
2 Apply the UT Eq. (6.7)-(6.9) to the process:

(ŷ,ΣΣΣy) ≡ UT(ŷ0,ΣΣΣy0 , f ,∆tUKF);
3 Add the uncertainty of the process: ΣΣΣy ← ΣΣΣy +ΣΣΣf ;
4 Apply the UT Eq. (6.7)-(6.9) to transform from state to

measurement space (ẑ′,ΣΣΣz′) ≡ UT(ŷ,ΣΣΣy,g);
5 Add the uncertainty of measurements: ΣΣΣz′ ← ΣΣΣz′ +ΣΣΣz;
6 Compute the cross-correlation matrix between the state and

measurements: H =
∑n

k=−nw
[k]
c

(
χχχ
[k]
y − ŷ

)(
χχχ
[k]
z′ − ẑ′

)T
;

7 Compute the Kalman gain: K = HΣΣΣ−1
z′ ;

8 Update the state estimation with the vector of measurements:
ŷ← ŷ +K(z− ẑ′), ΣΣΣy ← ΣΣΣy(I−HKT );

9 Compute the Kalman innovation: w = K(z− ẑ′);
10 Update the process uncertainty covariance matrix:

ΣΣΣf ← (1− η)wwT + ηΣf ;

11 end

are defined as

w[0]
m =

λ

n+ λ
, w[0]

c =
λ

n+ λ
+ (1− θ2 + β),

w[k]
c = w[k]

m =
1

2(n+ λ)
for k ̸= 0,

(6.10)

where λ, θ and β are tuning parameters. The variable λ controls the spread of

sigma points. The variables θ and β are exclusively related to the weight w
[0]
c

of the covariance matrix reconstruction. The tuning parameter β is used to
encode information about the underlying probabilistic distribution. If the real
statistical distribution, after the UT, is Gaussian its optimal choice is β = 2.
The variable θ is used to control the relevance of the mean with respect to the
spread of sigma points in the reconstruction of the covariance matrix.

6.2.2 Orbit filter

The orbit estimation process infers the orbital state, in terms of MEE, and the
small body gravity field spherical harmonics up to a certain degree and order
norb × norb. The previous variables are grouped in the orbital extended state
yorb ∈ R6+

∑norb
n=2 2n+1

yorb = [p, f, g, h, k, L, C̃S
T

orb]
T , (6.11)

where the vector C̃Sorb ∈ R
∑norb

n=2 2n+1 stacks the gravity parameters as

C̃Sorb =
[
C̃20, . . . , C̃norb,norb

, S̃21, . . . S̃norb,norb

]T
. (6.12)
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Orbit process function

The orbit process dynamics combines the MEE Gauss variational equations
(see Eq. (2.10)) with constant evolutions of the spherical harmonics

ẏorb =


c̃(α̃αα) + Ã(α̃αα)agrav(α̃αα, C̃Sorb) + Ã(α̃αα)u

0
...
0

 . (6.13)

Note that only the orbital perturbation of the small body inhomogeneous grav-
ity field, up to norb× norb degree and order, is considered. The solar radiation
pressure and Sun third-body gravity perturbations are very weak in low orbits
(when compared to the small body inhomogeneous gravity field), thus they
have not been added in the process. For an interval duration of ∆torbUKF be-
tween measurements, a simple forward Euler integration method defines the
orbit process function

forb(yorb) = yorb +∆torbUKFẏorb, (6.14)

where the extended state yorb and the orbit process dynamics ẏorb are evaluated
at the beginning of the interval.

Orbit measurements transformation function

The orbital navigation sensors are a high resolution camera and a LIDAR. They
provide relative measurements with respect to landmarks. The landmarks are
previously identified features on the small body surface (e.g. craters). Specif-
ically, the high resolution camera provides the pixel location of a landmark,
in the camera plane, as pq = [pxq , pyq ]

T . The LIDAR measures the ranging
distance between the satellite and the landmark ρq. The subindex q denotes
the corresponding landmark. Then, for a current instant, the available set of
orbital measurements zorb ∈ R3l is

zorb =



pq′1
...

pq′l
ρq′1
...
ρq′l


, q′ = {q ∈ N | (rA − rAlmk,q) ∩ Ωbody = ∅}, (6.15)

where the prime symbol refers to the landmarks with line-of-sight with respect
to the satellite. The term Ωbody is the volume of the small body. This is a
necessary but not sufficient condition for the landmarks to be visible from the
high resolution camera and LIDAR. The visibility of a landmark also depends
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on the small body surface lighting conditions and the orientation of the camera
focal direction. The first aspect has not been modelled in this dissertation
for the sake of simplicity. The second aspect is considered and is the main
motivation to develop an attitude controller. The term l refers to the limitation
in the maximum number of landmarks that can be processed by the feature
identification algorithm (out of the scope of this work) between filter calls.

Now, let relate the orbital extended state yorb to its corresponding measure-
ments zorb through the transformation function gorb : R6+

∑norb
n=2 2n+1 → R3l.

Let define the relative position between landmarks and the satellite center of
mass as

ρρρAq = rA − rAlmk,q = [xq, yq, zq]
T . (6.16)

Note that the landmarks coordinates are constant in the asteroid centered
frame A. The transformation from MEE, α̃αα, to inertial Cartesian coordinates,
rI , is given by Eq. (2.11). Let define the previous mapping as the function
fα̃αα→r : R6 → R3 which receives a MEE and computes the corresponding Carte-
sian position in inertial space. Using the previous mapping function and trans-
forming the landmarks position to inertial space yields

ρρρIq = fα̃αα→r(α̃αα)− (RA
I )

T rAlmk,q, (6.17)

where the rotation matrix RI
A has been defined in Eq. (6.1). Then, the LIDAR

ranging measurement can be computed as

ρq = ∥ρρρIq∥2. (6.18)

To obtain the pixels coordinates of the high resolution camera, the relative
distance has to be projected into the camera plane. Let start by expressing
the satellite-landmark relative distance into the camera frame

ρρρCq = RC
BR

B
O(σσσB/O)R

O
I ρρρ

I , (6.19)

where RO
I , which depends on the satellite position and velocity, is given by

Eq. (6.3). The orientation of the satellite arises through the MRP, σσσB/O.
Since the camera focal direction is aligned with the zC direction, the landmark
coordinates, uq and vq, in the image plane are expressed by

uq = ffoc
xq
zq

, vq = ffoc
yq
zq

, (6.20)

where ffoc is the camera focal length. Finally, the pixel row and column pq are
obtained as

pq =

[
puq

pvq

]
=

[
⌊uq/pw⌋
⌊vq/pw⌋

]
, (6.21)

where pw is the pixel width and the floor operator ⌊⌋ guarantees the resulting
pixel is a natural number. Let recall that the pixel has to be within the camera
resolution in order to be visible. Under the previous steps of Eq. (6.17)-(6.21),
the orbit transformation function can be summarized to

gorb(yorb) =
[
pT
q′1
(α̃αα), . . . ,pT

q′l
(α̃αα), ρq′1(α̃αα), . . . , ρq′l(α̃αα)

]T
. (6.22)
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6.2.3 Attitude filter

The attitude filter infers the satellite rotational state (MRP and angular ve-
locity), the small body spherical harmonics up to a certain degree and or-
der natt × natt (sensed through the gravity-gradient torque) and the gyro-
scope bias. The previous variables are grouped in the attitude extended state
yatt ∈ R9+

∑natt
n=2 2n+1

yatt = [σσσT
B/I , ωωω

T
B/I , C̃S

T

att, ∆ωωωT
gyro]

T , (6.23)

where σσσB/I andωωωB/I are the body orientation and angular velocity with respect

to the inertial frame. The vector C̃Satt groups the gravity parameters as in
Eq. (6.12) but up to natt × natt degree and order. The attitude filter gravity
degree and order shall be chosen as natt < norb because the inhomogeneous
gravity effects are lesser observable through the gravity-gradient torque. The
variable ∆ωωωgyro is the gyroscope bias which is also estimated.

The attitude filter computes the body orientation with respect to the iner-
tial frame σσσB/I . This may seem contradictory as the station-keeping problem
(6.5) aims to maintain a stationary orientation with respect to the orbital frame
as σσσB/O = 0. The motivation behind this procedure is that the attitude sensors
(star-trackers and gyroscopes) provide measurements with respect to inertial
space, hence the state and measurements relation is direct. Nonetheless, by
joining the attitude and orbit filter outputs, the orientation with respect to
the orbital frame can be reconstructed by applying the MRP composition rule
(see Eq. (2.88))

σσσB/I

−σσσO/I−−−−→ σσσB/O,

σσσB/O =

(
1− ∥σσσO/I∥22

)
σσσB/I −

(
1− ∥σσσB/I∥22

)
σσσO/I − 2σσσB/I × σσσO/I

1 +
(
∥σσσO/I∥2∥σσσB/I∥2

)2 − 2σσσT
O/IσσσB/I

,
(6.24)

where σσσO/I ≡ σσσO/I(α̃αα) is the MRP expressing the orientation of the orbital
frame with respect to inertial space. This orientation depends on the orbit
MEE (see Eq. (6.3)).

Attitude process function

The attitude process dynamics is

ẏatt =


C(σσσB/I)ωωωB/I

J−1[Tgrav +Tu −ωωωB/I × (JωωωB/I)]

0
...
0

 , (6.25)
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where again constant evolutions of the gravity parameters and gyroscope bias
are assumed through the process. Since measurements are received at inter-
vals with a duration of ∆tattUKF, a forward Euler integration method yields the
attitude process function

fatt(yatt) = yatt +∆tattUKFẏatt, (6.26)

where the attitude extended state is evaluated at the beginning of the interval.

Attitude measurements transformation function

The attitude sensors are a star-tracker and gyroscopes. In a simplified way, it
is considered that the star-tracker provides a direct measurement of the body
orientation with respect to the inertial frame, namely σσσstar. The gyroscopes
provide the body angular velocity with respect to the inertial frame as ωωωgyro.
Then, the set of attitude measurements is zatt ∈ R6

zatt =

[
σσσstar

ωωωgyro

]
. (6.27)

In this case, the transformation function from the attitude state and its asso-
ciated measurements is very simple

gatt(yatt) =

[
σσσB/I

ωωωB/I +∆ωωωgyro

]
, (6.28)

where the gyroscope bias is persistently added to the process output in order
to match it with the measurements.

6.3 Model predictive guidance and control

In order to meet the station-keeping goals (circular orbit and stationary atti-
tude) of problem (6.5), an MPC-based guidance and control strategy is devel-
oped. Separate controllers are developed for orbit and attitude control. This
is motivated by the weak coupling of the system through the gravity-gradient
torque (the array of thrusters is assumed to provide control in any direction).
As such, decoupling the control problems is convenient for the sake of simplic-
ity. Both station-keeping controllers are based on a reference tracking strategy.

6.3.1 Guidance

The guidance block generates the reference that has to be tracked by the con-
trol program. The reference is the desired system evolution from the station-
keeping perspective.
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Orbital reference

For the orbital motion, the satellite is guided into a circular orbit with semi-
major axis ă. The remaining orbital elements such as the inclination i, right
ascension of the ascending node, Ω, argument of periapsis, ω, and true anomaly,
ν, are let to evolve freely. In terms of MEE, this was demonstrated to translate
into p̆ = ă and f̆ = ğ = 0. To prescribe the previous MEE subset, the
inhomogeneous gravity field perturbation is counteracted with the following
control acceleration

ŭ(t) = −

ăgrav,r(t)ăgrav,t(t)
0

 . (6.29)

The normal component to the orbital plane ŭn can take an arbitrary value
since the radial-tangential motion is independent of the out-of-plane motion
(see Eq. (2.10)). Then, for the sake of efficiency, the normal component in the
reference control acceleration is nullified. The dynamics of the reference is

d

dt


p̆

f̆
ğ

h̆

L̆

 =



0
0
0
0
0√
µ/ă3

+
ăgrav,n

2

√
ă

µ



0
0
0

s̆2 cos L̆

s̆2 sin L̆

2(h̆ sin L̆− k̆ cos L̆)


. (6.30)

The numerical integration (e.g. with a Runge-Kutta method) of the previ-
ous first order system of differential equations provides a time-varying orbital
reference as

x̆orb(t) = [ă, 0, 0, h̆(t), k̆(t), L̆(t)]T , (6.31)

where xorb denotes the orbit control state composed of the MEE. Note that the
MEE subset {h, k, L} is let to evolve naturally because it does not influence
the station-keeping of a circular orbit (however, the orbital plane may change
along time).

The extension of the previous formulation to a reference elliptic orbit is
also possible. It can be deduced that ė = (fḟ + gġ)/

√
f2 + g2 = 0 under the

control of Eq. (6.29). Then, the system is only affected by the out-of-plane
gravity perturbation agrav,n. This perturbation cancels itself for the radial-
tangential components as fḟ + gġ = 0 (see Eq. (2.10)) causes ė = 0. However,
the reference of the elements f and g would be time-varying.

Attitude reference

The attitude control aims to maintain the body frame aligned with the orbital
frame, σ̆σσB/O = 0, thus guaranteeing camera line-of-sight with the asteroid sur-

face. This translates to ˙̆σσσB/O = 0 which is achieved by imposing the following
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angular velocity profile (see Eq. (2.90))

ω̆ωωB
B/I(t) = ωωωO

O/I(x̆orb(t)), (6.32)

which means that the satellite has to rotate with respect to inertial space with
the same rate of the orbital frame. In order to acquire the previous angular
velocity profile, by clearing Eq. (2.91), the control torque has to fulfil

T̆u(t) = J ˙̆ωωωB
B/I(t) + ω̆ωωB

B/I(t)× (Jω̆ωωB
B/I(t))− T̆grav(t),

˙̆ωωωB
B/I(t) = ω̇ωωO

O/I(x̆orb(t)).
(6.33)

However, in order to ease the computational burden of the attitude reference
computation, T̆u ≈ 0 is assumed. This causes the attitude reference to be
fictitious but close to the real one if the required counteracting control torque
is low enough. Let define the attitude control state as xatt = [σσσT

B/O, (ωωω
B
B/I)

T ]T .
Then, the fictitious attitude reference is

x̆att(t) =

[
0

ω̆ωωO
O/I(x̆orb(t))

]
, (6.34)

which is computed in a straightforward way because it only requires the orbital
reference of Eq. (6.31) as an input. The fictitious attitude reference generates
a drift along time that has to be compensated by the control program.

6.3.2 Control

The orbit-attitude controllers aim to track their respective references x̆orb and
x̆att. Since the problem is the same, a common reference tracking MPC is pre-
sented. Firstly, the generic reference tracking problem is stated in a continuous
form. Then, the orbit-attitude non-linear dynamics are linearized around the
reference. This way, a linear system is obtained. Finally, a QP form of the
reference tracking problem is obtained by means of discretization. In any case,
the specific orbit-attitude control programs are explicitly declared at the end
of the section.

Continuous reference tracking problem

Let define a generic state x and a control u with their respective references x̆
and ŭ. Then, let define the reference tracking error and control increment as
∆x = x − x̆ and ∆u = u − ŭ respectively. Using the previous definitions, a
reference tracking control program can be stated in terms of the tracking error
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and control increment as

minimize
∆x(t),∆u(t)

∫ tf

t0

(
γ∆xT (t)Qx∆x(t) + ∆uT (t)∆u(t)

)
dt,

subject to ∆ẋ(t) = ẋ− ˙̆x,
ẋ(x(t),u(t)) = c(x) + f(x) +B(x)u,
∆x(t) = x− x̆,
∆u(t) = u− ŭ,
−u ≤ u(t) ≤ u,

(6.35)

where the time dependencies of the non-incremental variables have been fre-
quently omitted for the sake of compactness. The restrictive station-keeping
condition of problem 6.5 is relaxed to minimize the reference tracking error
in the objective function. The scalar γ > 0 weights the relative importance
given to the reference tracking accuracy with respect to the control effort. The
matrix Qx extracts the tracked states as

Qx =

[
I 03×3

03×3 03×3

]
, (6.36)

where for both attitude and orbit controllers, the tracked variables are the
first three components of their states, that is σσσB

B/I and {p, f, g} respectively.

In the generic problem reference tracking problem (6.35), the state dynamics
are composed by a natural term c (Keplerian motion / gyroscopic terms), the
perturbations term f (inhomogeneous gravity / gravity-gradient torque) and a
matrix B premultiplying the control.

Linearized model

Both orbital and attitude dynamics are non-linear (see Eq. (2.10) and Eq. (2.90)-
(2.91) respectively). However, in a station-keeping phase, the state should be
close to the reference as x(t) ≈ x̆(t). Specifically, it is expected that the po-
sition tracking errors are negligible when compared to the orbital semi-major
axis ∥∆r∥2/a ≪ 1. Under the previous assumption, the dynamics can be
linearized around its reference as

ẋ(x(t),u(t)) ≈ ˙̆x(t) +A(x̆(t), ŭ(t))∆x(t) +B(x̆(t))∆u(t) + ∆ ˙̆x(t), (6.37)

where A ∈ R6×6 is the linearized tracking error matrix which has the following
expression

A(x̆(t), ŭ(t)) =
∂c

∂x

∣∣∣∣
x̆

+
∂f

∂x

∣∣∣∣
x̄

+
∂Bŭ

∂x

∣∣∣∣
x̆

. (6.38)

The term ∆ ˙̆x accounts for the possibility of drift if the reference is not consis-
tent with the system dynamics

∆ ˙̆x(t) = ẋ(x(t), ŭ(t))− ˙̆x(t). (6.39)
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By clearing the reference variation to the left side of Eq. (6.37), the linearized
tracking error dynamics is

∆ẋ(t) = A(x̆(t), ŭ(t))∆x(t) +B(x̆(t))∆u(t) + ∆ ˙̆x(t), (6.40)

which is a LTV system due to the time-varying reference. The general explicit
solution to the LTV system of Eq. (6.40) is

∆x(t) = ΦΦΦ(t, t0)∆x0 +

∫ t

t0

ΦΦΦ(t, τ)B(x̆(τ))∆u(τ)dτ +∆x̆(t), (6.41)

where the reference tracking error transition matrix ΦΦΦ is obtained by integrat-
ing its own dynamics

Φ̇ΦΦ(t, t0) = A(x̆(t), ŭ(t))ΦΦΦ(t, t0), ΦΦΦ(t0, t0) = I. (6.42)

For both orbit-attitude motions, the ODE system of Eq. (6.42) is composed of
36 linear differential equations.

Discretization

Still, even under the linearized dynamics of Eq. (6.41), the reference tracking
problem is continuous with infinite degrees of freedom. In order to reduce it
to a finite tractable form, the control horizon will be discretized in time.

Pulse amplitude modulation: let consider pulse PAM control models for
thrust and torque as defined in Eq. (2.62) and Eq. (2.98) respectively. Under
the PAM model, the control signal is constant over an interval t ∈ [tj−1, tj) of
duration ∆t = tj − tj−1

u(t) = {uj , t ∈ [tj−1, tj), j = 1 . . . N}. (6.43)

Note that the control amplitude changes instantaneously under that the PAM
model. Then, Eq. (6.41) explicit expression of the tracking error can be evalu-
ated at discrete instants ∆xj = ∆x(tj) (coincident with the end of each control
PAM interval) as

∆xj = ΦΦΦ(tj , t0)∆x0 +

j∑
i=1

ΦΦΦ(tj , ti)

∫ ti

ti−1

ΦΦΦ(ti, τ)B(x̆(τ))dτ∆ui +∆x̆j , (6.44)

where ∆x̆j = ∆x̆(tj) is the cumulated drift at the instant tj . The control
reference (for the orbit case) has to be converted into a PAM formulation as

ŭj =
1

tj − tj−1

∫ tj

tj−1

ŭ(t)dt. (6.45)
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Objective function: let now discretize the integrals of the objective function
in the continuous reference tracking problem (6.35)

1

tf − t0

∫ tf

t0

(
γ∆xT (t)Qx∆x(t) + ∆uT (t)∆u(t)

)
dt ≈

N∑
j=1

(
γ∆xT

j Qxxj +∆uT
j ∆uj

)
,

(6.46)

Note that the tracking error is evaluated at the end of each control interval
which is aligned with Eq. (6.44).

Control bounds: due to the PAM formulation, the control signal bounds
can be easily discretized as

−u ≤ ŭj +∆uj ≤ u, j = 1 . . . N. (6.47)

Compact formulation

In order to ease the notation, a compact formulation is developed. Let recall
that the control horizon spans from tf−t0 but it is indefinitely slided forward in
time until the station-keeping phase ends. Consequently, let denote the current
MPC interval as k. This causes the MPC prediction horizon timespan to be
[tk, tk+N ) = [t0 + k∆t, tf + k∆t). Note that the control program is slided after
an interval of duration ∆t which is coincident with the interval of the PAM
control signal. Let define stack vectors for the tracking error ∆xS(k) ∈ R6N ,
the reference drift ∆x̆S(k) ∈ R6N and the control increment ∆uS(k) ∈ R3N as

∆xS(k) =

∆xk+1
...

∆xk+N

 , ∆x̆S(k) =

∆x̆k+1
...

∆x̆k+N

 ,

∆uS(k) =
[
∆uT

k+1 . . . ∆uT
k+N

]T
.

(6.48)

Let also define stack vectors for the reference state x̆S(k) ∈ R6N and the
reference control ŭS(k) ∈ R3N as

x̆S(k) =

 x̆k+1
...

x̆k+N

 , ŭS(k) =

 ŭk+1
...

ŭk+N

 . (6.49)
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Finally, let define the following stack matrices F ∈ R6N×6 and G∆u ∈ R6N×3N

F(k) = [ΦΦΦT (tk+1, tk), . . . ,ΦΦΦ
T (tk+N , tk)]

T ,

G(k) =
∫ tk+1

tk
ΦΦΦ(tk+1, τ)B(x̆(τ))dτ . . . 06×3

...
. . .

...

ΦΦΦk+N,k+1

∫ tk+1

tk
ΦΦΦ(tk+1, τ)B(x̆(τ))dτ . . .

∫ tk+N

tk+N−1
ΦΦΦ(tk+1, τ)B(x̆(τ))dτ

 ,

where ΦΦΦk+N,k+1 = ΦΦΦ(tk+N , tk+1). The relation between the previous stack
matrices with the stack vectors of Eq. (6.48) yields the linear propagation
equation of the tracking error in a compact form

∆xS(k) = F(x̆S, ŭS)∆xk +G(x̆S, ŭS)∆uS +∆x̆S, (6.50)

where the dependency with the current MPC step k has been omitted at the
right-hand side of Eq. (6.50) for the sake of clarity. Note that the stack matrices
F and G depend on the reference state and control due to the transition matrix
dependency with the tracking error matrix A (see Eq. (6.38)).

Adapting the discrete objective function (see Eq. (6.46)) and the control
bounds constraint (see Eq. (6.47)) to the compact formulation, the reference
tracking problem states as follows

minimize
∆uS(k)

γ(∆xS(k))
TQSx∆xS(k) + (∆uS(k))

T∆uS(k),

subject to ∆xS(k) = F(x̆S, ŭS)∆xk +G(x̆S, ŭS)∆uS +∆x̆S,

− uS ≤ ŭS(k) + ∆uS(k) ≤ uS,

(6.51)

where QSx ∈ R6N×6N and uS ∈ R3N stack the weighting matrix Qx and the
control bounds u as

QSx =

 Qx . . . 06×6
...

. . .
...

06×6 . . . Qx

 , uS =

u...
u

 . (6.52)

Note that the reference tracking optimization problem (6.51) is a QP problem
with 3N decision variables. The stack vector of the tracking error is related to
the control increment by an equality constraint that can be directly introduced
into the objective function. Once the QP optimization is solved, the control
sequence is constructed as uS(k) = ŭS(k) + ∆uS(k).

Orbit-attitude reference tracking programs

Now, the generic reference tracking QP optimization (6.51) is explicitly stated
for both orbit and attitude control.
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Orbit reference tracking program: let recall that the orbit state is defined
as xorb = [p, f, g, h, k, L]T and the control variable is the thrusters exerted
acceleration as u = [ur, ut, un]

T . Then, the compact control program for the
orbit reference tracking is

minimize
∆uS(k)

γorb(∆xSorb(k))
TQSx∆xSorb(k) + (∆uS(k))

T∆uS(k),

subject to ∆xSorb(k) = Forb(x̆S, ŭS)∆xorb,k

+Gorb(x̆Sorb, ŭS)∆uS +∆x̆S,

− uS ≤ ŭS(k) + ∆uS(k) ≤ uS,

ASun∆uS(k) = 0,

(6.53)

where the matrix ASun ∈ RN×3N nullifies the out-of-plane control by imposing
∆un = 0

ASun =

0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 0 1

 . (6.54)

This is consistent with the control reference as per Eq. (6.29). In [Tavakoli14],
which developed an MPC-based station-keeping control for low-Earth orbits
station-keeping, it was demonstrated that nullifying the out-of-plane reduces
significantly the control effort if only orbit semi-major axis and eccentricity is
controlled. The rationale behind the previous fact is that the most direct way
to induce changes in the orbit shape is by applying a control contained in the
orbital plane (see the classical orbital elements GVE in Eq. (2.4)). However,
an optimizer may found that by changing the orbital angular momentum or
the line of apsides, indirect changes on the semi-major axis and eccentricity
can be induced. This leads to an efficient control in the short-term (over the
prediction horizon) but inefficient at the long-term (the whole duration of the
station-keeping phase).

Attitude reference tracking program: let recall that the attitude state is
xatt = [σσσT

B/I , (ωωω
B
B/I)

T ]T and the control torque is Tu = [Tu1 , Tu2 , Tu3 ]
T . Using

the previous variables, the attitude tracking reference program is

minimize
∆TSu(k)

γatt(∆xSatt(k))
TQSx∆xSatt(k) + (∆TSu(k))

T∆TSu(k),

subject to ∆xSatt(k) = Fatt(x̆Satt, T̆Su)∆xatt,k

+Gatt(x̆Satt, T̆Su)∆TSu +∆x̆Satt,

−TSu ≤ T̆Su(k) + ∆TSu(k) ≤ TSu,

(6.55)

where TSu(k) = [TT
uk
, . . . ,TT

uk+N
]T stacks the control torque.
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6.4 Learning-based guidance, navigation and con-
trol

The previous UKF navigation (see Section 6.2) and MPC-based guidance and
control (see Section 6.3) are integrated to obtain a learning-based GNC scheme.
The model learning is enabled by the navigation block which recursively up-
dates the gravity parameters. Since the guidance and control is MPC-based, a
more accurate model enhances the state prediction, thus increasing the refer-
ence tracking accuracy.

The previous GNC architecture is valid for a single spacecraft. As a conse-
quence, the gravity estimation would largely rely on the asteroid regions that
the satellite flew over. Under the previous consideration, it arises the idea of
using multiple satellites (e.g. constellation) for the mission. The main assump-
tion is that communication links between the multiple satellites are available.
This allows to simultaneously orbit several regions of the small body, thus in-
creasing the amount of available information for the gravity estimation. In this
case, it is chosen to weight the individual estimates across the constellation in
order to compute a common gravity estimation.

6.4.1 Integrated GNC scheme

The integrated GNC scheme for a single orbiting satellite is summarized in
Fig. 6.5. Four blocks can be distinguished: dynamics driven by the control
actuators (yellow); sensors (orange); navigation filters (green); MPC-based
guidance and control (blue). The focus of this thesis has been the GNC algo-
rithm as formed by the filters and MPC. As it was previously mentioned in this
chapter, the specific details of the sensors are out of the scope of this work.

The orbit-attitude dynamics would employ a high-fidelity model for small
bodies (see the next Section 6.5). Measurements of such realistic model are
taken by the sensors. These measurements feed the filters in order to estimate
the satellite state and the small body gravity. Let recall that the GNC algo-
rithm is based on a low-fidelity dynamical model with only gravity terms up to
norb×norb or natt×natt degree and order. The attitude filter works at a higher
sampling rate than the orbit one as the attitude sensors take measurements
faster. However, they exchange their own estimates (orientation for the camera
/ orbit state for the gravity-gradient torque) when possible. They also update
each other gravity estimation.

Finally, using the respective state and gravity estimations of the filters, the
guidance and control module computes a thrust and a torque command which
closes the loop. The guidance algorithm generates references to be tracked
by the subsequent control programs. The output of the control algorithm is
an increment that is added to the control reference in order to construct the
control command. The control command (thrust or torque) is applied to the
high-fidelity orbit-attitude dynamics.
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Figure 6.5: GNC scheme for a single spacecraft orbiting around the
asteroid.

6.4.2 Gravity estimation with a satellite constellation

Let consider now a constellation of Nsat satellites orbiting the asteroid as it
can be seen Fig. 6.6. Assuming there are always communication links between
them, and that the filters are synchronized in time, it is possible to compute a
weighted average of the gravity parameters as

ˆ̃Cnm =

Nsat∑
ι=1

w
[ι]

C̃nm

ˆ̃C [ι]
nm, ˆ̃Snm =

Nsat∑
ι=1

w
[ι]

S̃nm

ˆ̃S[ι]
nm, (6.56)

where the index ι denotes each satellite and (w
[ι]

C̃nm
, w

[ι]

S̃nm
) are the weights of

each satellite estimation. There could be multiple choices to these weights.
However, a smart choice could be to assign more weight to the less uncertain
estimates as

w
[ι]

C̃nm
=

(
1/σ

[ι]

C̃nm

)2
Nsat∑
ι=1

(
1/σ

[ι]

C̃nm

)2 , w
[ι]

S̃nm
=

(
1/σ

[ι]

S̃nm

)2
Nsat∑
ι=1

(
1/σ

[ι]

S̃nm

)2 , ι = 1 . . . Nsat, (6.57)

where σ
[ι]

C̃nm
and σ

[ι]

S̃nm
are the 1-sigma standard deviations of each gravity pa-

rameter (square root of the covariance matrix diagonal). Using those weights,
the weighted mean mitigates outliers, thus potentially enhancing the gravity
estimation convergence and accuracy. As there is a cross-correlation between
the state and spherical harmonics in the filters, the individual covariances are
not updated. The UKF requires the covariance extended state matrix to be
positive definite. As such, updating the gravity model block of the covariance
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matrix may not guarantee the resulting extended state covariance matrix to
be positive definite in the next call. The complete methodology is shown as
pseudocode in Algorithm 5. The constellation concept arises through step 15,
where the joint gravity estimation is computed and shared across the constella-
tion after the output of each satellite individual filter. Note that each satellite
carries out its own navigation process and control computation in parallel.

Figure 6.6: Gravity estimation with a satellite constellation.

6.5 Numerical results

The key feature of the designed learning-based GNC scheme is its ability to
improve the control accuracy by updating the gravity parameters estimation.
In that sense, the proposed methodology is compared to a non-learning based
MPC scheme. The effect of nullifying the out-of-plane control is also assessed
in terms of its control accuracy and efficiency. Finally, the proposed satellite
constellation is compared with single satellites for the gravity estimation.

To assess the previous facts, a small body mission to asteroid 433 Eros is
considered. This is usually the benchmark scenario for small bodies applica-
tions as a huge amount of data is available from the NEAR Shoemaker mission.
The asteroid 433 Eros is a near-Earth object with a distinctive elongated shape.
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Algorithm 5: Learning-based GNC scheme

1 begin
2 for i = 1 . . . Norb

UKF do
3 for j = 1 . . . Natt

UKF do
4 Execute the attitude UKF Algorithm 4 to update the

extendend state ŷatt,ΣΣΣyatt with incoming measurements
zatt;

5 end
6 Update the attitude guidance reference with Eq. (6.34),

x̆att(katt);
7 Solve QP (6.55) to obtain the torque control sequence

Tu(katt)← ∆Tu(katt);
8 Apply the first control of the sequence Tu1(katt);
9 Update the current MPC step katt ← katt + 1;

10 Update a subset of the orbit filter gravity parameters with the

attitude filter estimation
̂̃
CSorb ← ̂̃

CSatt for n,m = 2 . . . natt;
11 Execute the orbit UKF Algorithm 4 to update the extendend

state ŷorb,ΣΣΣyorb
with incoming measurements zorb;

12 end
13 Do the weighted average to the constellation gravity estimates

ˆ̃Cnm =
∑Nsat

ι=1 w
[ι]

C̃nm

ˆ̃C
[ι]
nm, ˆ̃Snm =

∑Nsat
ι=1 w

[ι]

S̃nm

ˆ̃S
[ι]
nm;

14 Update each individual satellite estimation
ˆ̃C
[ι]
nm ← ˆ̃Cnm , ˆ̃S

[ι]
nm ← ˆ̃Snm, ι = 1 . . . Nsat;

15 Update the orbit guidance reference with Eq. (6.31), x̆orb(korb) and
ŭ(korb);

16 Solve the QP (6.53) to obtain the control acceleration sequence
u(korb)← ŭ(korb) + ∆u(korb);

17 Apply the first control of the sequence u1(korb);
18 Update the current MPC step korb ← korb + 1;
19 Go to step 2;

20 end
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6.5.1 Simulation model, GNC parameters and performance in-
dexes

Subsequently, the employed simulation model composed of the system dynam-
ics and the satellite characteristics is presented. Next, the GNC tuning pa-
rameters for all the simulations are stated. Finally, to ease the analysis of the
results, some performance indexes are described

Simulation model

System dynamics: the orbit-attitude simulation model assumes a satellite or-
biting in the vicinity of a small body. In that regime, the relevant orbital
perturbations are the small body inhomogeneous gravity field, the Sun’s third-
body gravity and the solar radiation pressure

˙̃ααα(t) = c̃(α̃αα) + Ã(α̃αα)(agrav + asun + aSRP + u),

σ̇σσB/O(t) = C(σσσB/O)[ωωωB/I −R(σσσB/O)ωωω
O
O/I ],

ω̇ωωB/I(t) = J−1[−ωωωB/I × (JωωωB/I) +Tgrav +Tu].

(6.58)

The asteroid 433 Eros has a standard gravitational parameter of µ = 4.4628 ·
105 m3/s2 and a rotation period of TA = 5.27 h. The inhomogeneous grav-
ity of field of 433 Eros is characterized by a 15×15 degree and order nor-
malized (Re = 16 km) spherical harmonics model determined during the
NEAR Shoemaker mission [Konopliv02]. The Sun is assumed to be placed
at rI⊙ = [1.46, 0, 0]T AU distance from the asteroid.

Satellite characteristics: each satellite is assumed to have a mass of m =
1000 kg. Its mass distribution model consists of five discrete masses being four
of them contained in the same plane and the remaining one placed in an axis
perpendicular to that plane (see Table 6.1). The coefficient of reflectivity and
exposed area to SRP are CR = 1.4 and A = 10 m2 (see Eq.(2.23)).

l xBl [m] yBl [m] zBl [m] ml [kg]

1 8 0 0 200
2 -2 -2 0 200
3 -2 2 0 200
4 -2 0 -1 200
5 -2 0 1 200

Table 6.1: Mass distribution of the satellite.

The associated inertia matrix to the previous mass distribution is

J =

2000 0 0
0 16400 0
0 0 17600

 kg ·m2. (6.59)
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The control bounds of the exerted acceleration and torque are taken as u =
[1, 1, 1]T cm/s2 and Tu = [10, 10, 10]T mN ·m. Although a PAM control was
assumed in the GNC scheme, the transient of the thrust and torque signals is
considered according to Eq. (2.63). The time constant is taken as τ = 0.1 s−1.

The satellite is equipped with a high resolution camera, a LIDAR, star-
trackers and gyroscopes. The camera resolution is of 2048× 2048 pixels with a
30◦ field of view and a focal length of ffoc = 300 mm. This yields a pixel width
of pw = 75.8 µm. The maximum number of landmarks, from which the camera
and LIDAR can take measurements between filter calls, is l = 3. Following the
simplified models presented in Section 6.2, the sensors accuracy is statistically
characterized as Gaussian variables with their bias and standard deviation
stated in Table 6.2. Note that the star tracker uncertainty is introduced via
the rotation angle of the MRP (see Eq. (2.86)).

Sensor Variable Bias 1-σ noise

Camera pq [0, 0]T px [0.5, 0.5]T px
LIDAR ρq 0 m 5 m
Star tracker θrot 0 arcsec 10 arcsec
Gyroscopes ωωωgyro [5, 5, 5]T ◦/h [0.05, 0.05, 0.05]T ◦/h

Table 6.2: Sensors datasheet.

GNC parameters

Navigation filters: the orbit-attitude filters estimate gravity parameters up
to 4 × 4 and 2 × 2 degree and order respectively. This makes norb = 4 and
natt = 2. As such, the orbit estimation variable is composed of 27 estimates
where 6 of them correspond to the MEE components and the remaining 21
to gravity parameters. The attitude estimation variable is composed of 14
estimates where 3 corresponds to the MRP, 3 are the components of the body
angular velocity, 5 are the gravity parameters and 3 are the gyroscope bias.

The UKF parameters are tuned as {λ, θ, β, η} = {(θ2 − 1)n, 10−3, 2, 0.98}
for both orbit and attitude filters. The term n is the dimension of the estimated
variables (27 for the orbit and 14 for the attitude case). The parameters λ, θ
and β follow the canonical choice of [Wan00]. The fading factor η is chosen
near to the unity to provide a slow update pace of the process noise. This
prevents excessive covariance inflation due to outliers.

The filters are called each ∆tattUKF = 3.6 s and ∆torbUKF = 36 s for the attitude
and orbit respectively. These sampling rates are driven by the speed of the sen-
sors measurements acquisition. In that sense, the attitude sampling rate has
been considered one order of magnitude faster than the orbit one. The orbit
filter has to leave enough margin so that the camera feature identification pro-
cess recognizes the landmarks on the taken image. However, it has to be also
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fast enough in order to capture the frequency of the highest order estimated
gravity parameter.

Guidance and control: the MPC-based guidance and control algorithm pa-
rameters are the control horizon duration tN − t0, the number of discretization
intervals N and the tracking error weight γ in the objective function. The
duration of a sampling interval is given by ∆t = (tN − t0)/N . The control is
applied for the entire interval [tk, tk + ∆t) and the control program is slided
forward in time to recompute a new control sequence. The specific values of
the previous variables for both orbit and attitude control programs are shown
in Table 6.3.

tN − t0 [min] N [−] ∆t [s] γ [−]
Attitude 6 10 36 1000
Orbit 240 40 360 1000

Table 6.3: Guidance and control algorithm parameters.

Performance indexes

In order to compare the different simulations, some performance indexes are
defined. These indexes apply to the whole scenario timespan which last two
weeks for each simulation.

Orbit control: the orbit control efficiency is measured through the fuel
consumption as

mF =

∫ tf

t0

ṁ(t)dt ≈
∫ tf

t0

m0u(t)

g0Isp
dt, (6.60)

where g0 = 9.8066 m/s2 is the gravity at Earth’s sea level. The mass has been
assumed constant as m0 because it is expected that the fuel consumption is
very low m0 ≫ mF . Due to the continuous application of control acceleration,
the most suitable propulsion plant may be electric thrusters, thus Isp = 2900 s
has been assumed. Since the goal is to station-keep a circular orbit, the orbit
control accuracy is measured as the average ∆R and maximum ∆R tracking
error on the orbital radius

∆R =
1

tf − t0

∫ tf

t0

|∆r(t)|dt, ∆R = max{|∆r(t)|}, (6.61)

where ∆r = ∥r∥2 − ă. Let recall that the semi-major axis coincides with the
radius for a circular orbit.
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Attitude control: the attitude control efficiency is measured as the integral
of the control torque norm over the scenario timespan

TU =
1

tf − t0

∫ tf

t0

∥Tu(t)∥2dt. (6.62)

The attitude control accuracy metrics are the average ∆ΘΘΘ and maximum ∆ΘΘΘ
tracking errors in terms of Euler angles as

∆ΘΘΘ =
1

tf − t0

∫ tf

t0

|∆θθθ(t)|dt, ∆ΘΘΘ = max{|∆θθθ(t)|}, (6.63)

where θθθ = [θ1, θ2, θ3]
T ≡ {pitch, roll, yaw} defines the following {xyz} rotation

sequence from the orbit to the body frame

O
θ3−−→
xO

S′ θ2−−→
yS′

S′′ θ1−−→
zS′′

B. (6.64)

Gravity estimation: the estimation error of each gravity parameter is quan-
tified as

δC̃nm(t) =
ˆ̃Cnm(t)− C̃nm

C̃nm

, δS̃nm(t) =
ˆ̃Snm(t)− S̃nm

S̃nm

, (6.65)

where the values of interest correspond to the end of the scenario: δC̃f
nm =

δC̃nm(tf ) and δS̃f
nm = δS̃nm(tf ). The convergence of a gravity estimation

parameter is considered to be achieved when its estimation error is under a
20% and is maintained below this threshold until the end of the simulation.
Using the previous condition, a convergence time can be defined for each gravity
parameter as

tC̃nm
≡ {δC̃nm(t) ≤ 0.2, t ≥ tC̃nm

},
tS̃nm

≡ {δS̃nm(t) ≤ 0.2, t ≥ tS̃nm
}.

(6.66)

6.5.2 Efficiency of nullifying the out-of-plane control

Let assess the impact of nullifying the out-of-plane control in the orbit program
6.53. To this end, five simulations with (∆un(t) = 0) and without (∆un(t) ≡
free) nullifying the out-of-plane control are carried out. For each scenario,
the initial orbital elements are ααα0 = [34 km, 0, i0, 0◦, 0◦, 0◦]T . The initial
inclination is varied as i0 = {30◦, 60◦, 90◦, 120◦, 150◦} because it masters the
asteroid regions that are flew over by the satellite. The reference orbit to
station-keep is defined by ă = 34 km and ĕ = 0.

The results are summarized in Table 6.4. It is demonstrated that nullifying
the out-of-plane control reduces fuel consumption for all cases. In average,
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the fuel consumption is reduced in a 32% when compared to allowing out-
of-plane control. Regarding the orbit reference tracking accuracy, the gain,
when allowing out-of-plane control, is marginal as it only improves ∆R a 3%
in average while the maximum errors ∆R are higher in a 6.5% with respect
to nullifying the out-of-plane control. Consequently, it can be concluded that,
in general, nullifying the out-of-plane control saves fuel consumption without
impacting the reference tracking accuracy.

un(t) = 0 un(t) ≡ free

Simulation mF [kg] ∆R [m] ∆R [m] mF [kg] ∆R [m] ∆R [m]

i0 = 30◦ 1.7962 160.12 615.16 1.8458 146.39 636.14
i0 = 60◦ 1.3505 251.39 609.87 2.4677 319.78 583.50
i0 = 90◦ 1.3926 298.72 811.80 2.4366 314.82 1026.7
i0 = 120◦ 1.3392 155.36 485.75 1.4218 95.206 475.35
i0 = 150◦ 1.7338 123.90 465.42 1.8441 85.028 459.81
Average 1.5225 197.90 597.60 2.0032 192.25 636.30

Table 6.4: Orbit control performance with and without nullifying the
out-of-plane control.

6.5.3 Learning-based MPC vs non-learning MPC

In this section, the proposed learning-based MPC scheme of Fig. 6.5 is com-
pared to a non-learning MPC. The non-learning MPC is equivalent to the
learning-based MPC except from the fact that the filter does not update the
gravity parameters of the guidance and control block. Consequently, the non-
learning MPC computes a control under a Keplerian gravity model which is
potentially more inaccurate than the learning-based MPC estimated model.
This allow to assess the benefits of a learning-based strategy in terms of control
performance. Note that for both schemes the navigation filters are identical,
thus performing an internal estimation of the gravity parameters.

Orbit-attitude control performance

Let first assess the orbit and attitude control performances for the same sce-
narios of the previous Section 6.5.2.

Orbit control: the numerical results for the learning-based and non-learning
based MPC are shown in Fig. 6.7-6.10 and Table 6.5. Figure 6.7 shows the
orbital radius evolution for all the scenarios of the learning-based MPC and the
non-learning MPC. It can be observed that the learning-based MPC succeeds
in tracking the reference in all the cases while the non-learning MPC presents
a persistent offset in the tracking error for i0 = 30◦, 90◦, 150◦. These facts
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are also observed in Fig. 6.8 where the tracking error accuracy index and fuel
consumption per day has been plotted. There are no clear conclusions regard-
ing the superior efficiency of one method above the other (for some scenarios
the learning-based MPC performs better while in others it is the non-learning
MPC). Table 6.5 shows the fuel consumption, error tracking index and its max-
imum for each scenario and the average of these. In average, the learning-based
MPC fuel consumption is practically the same as the non-learning MPC. How-
ever, its superiority comes from the orbit reference tracking accuracy which
reduces in a factor of three the one assocciated to the non-learning MPC and
the maximum error by almost the half.

Figures 6.9-6.10 show individual results for the initial polar orbit case.
Again, the semi-major axis and eccentricity evolutions evidence the superiority
in the reference orbit tracking of the learning-based MPC (see Fig. 6.9). The
radial and tangential control accelerations for both controllers can be seen
in Fig. 6.10. It is observed that the control is quite similar during the first
week of the simulation but a phasing between the signals starts to arise during
the second week. This is probably due to the model learning process which
allows to predict inhomogeneous gravity perturbations and counteract these
with suitable control actions. The non-learning MPC model is more inaccurate
and reacts later just when the tracking error has enlarged.

0 0.5 1 1.5 2

33

34

35

0 0.5 1 1.5 2

33

34

35

0 0.5 1 1.5 2

33

34

35

0 0.5 1 1.5 2

33

34

35

0 0.5 1 1.5 2

33

34

35

Figure 6.7: Orbital radius for different initial inclinations. Blue:
learning-based MPC; red: non-learning MPC; black: reference.

Attitude control: the attitude control performance of the learning-based and
non-learning MPC are shown in Tables 6.6-6.7. The attitude control accuracy
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Figure 6.8: Average tracking error per day (left) and fuel consumption
per day (right). Dots: learning-based MPC; triangles: non-learning
MPC.
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Figure 6.9: Semi-major axis (left) and eccentricity (right) for i0 = 90◦.
Blue: learning-based MPC; red: non-learning MPC.

Learning-based MPC Non-learning MPC

Simulation mF [kg] ∆R [m] ∆R [m] mF [kg] ∆R [m] ∆R [m]

i0 = 30◦ 1.7962 160.12 615.16 1.9958 1023.0 1533.4
i0 = 60◦ 1.3505 251.39 609.87 1.3788 341.06 704.45
i0 = 90◦ 1.3926 298.72 811.80 1.2560 562.58 1043.1
i0 = 120◦ 1.3392 155.36 485.75 1.2886 201.06 443.44
i0 = 150◦ 1.7338 123.90 465.42 1.9121 1099.2 1437.5
Average 1.5225 197.90 597.60 1.5663 645.38 1032.4

Table 6.5: Orbit control performance of learning-based MPC and non-
learning MPC.
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Figure 6.10: Control acceleration for i0 = 90◦. Blue: learning-based
MPC; red: non-learning MPC.

is practically independent, in terms of mean and maximum tracking errors, of
learning the model or not. The roll and yaw are driven to almost null mean
values while the pitch angle presents, for all the simulations, a persistent offset
in the tracking error of ≈ −1.5◦. This may be explained by the fact that the
target attitude is not an equilibrium of the system. An offset-free tracking
MPC is only guaranteed if the target is an equilibrium. Still, the discrepancy
is low enough, thus enabling camera and LIDAR line-of-sight with the small
body. In terms of control effort, TU , the learning-based MPC reduces the
torque demands in a 39% with respect to the non-learning MPC. The previous
fact highlights the superiority of the learning-based MPC in terms of attitude
control efficiency without a loss in the tracking accuracy. Again, results of

Learning-based MPC

Simulation TU [mN ·m] ∆ΘΘΘ [◦] ∆ΘΘΘ [◦]

i0 = 30◦ 0.6346 [1.52, 0.02, 0.05]T [2.53, 0.16, 0.39]T

i0 = 60◦ 0.5996 [1.55, 0.02, 0.05]T [2.53, 0.15, 0.38]T

i0 = 90◦ 0.5005 [1.57, 0.02, 0.05]T [2.54, 0.13, 0.42]T

i0 = 120◦ 0.6027 [1.55, 0.02, 0.04]T [2.54, 0.16, 0.29]T

i0 = 150◦ 0.6011 [1.52, 0.01, 0.04]T [2.54, 0.09, 0.38]T

Average 0.5877 [1.54, 0.02, 0.05]T [2.54, 0.14, 0.37]T

Table 6.6: Attitude control performance of learning-based MPC.

interest for the initial polar orbit simulation are shown in Fig. 6.11-6.12. The
pitch, roll and yaw evolutions for both controllers can be seen in Fig. 6.11.
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Non-learning MPC

Simulation TU [mN ·m] ∆ΘΘΘ [◦] ∆ΘΘΘ [◦]

i0 = 30◦ 1.0519 [1.67, 0.02, 0.05]T [2.53, 0.16, 0.40]T

i0 = 60◦ 0.9424 [1.56, 0.02, 0.05]T [2.53, 0.13, 0.36]T

i0 = 90◦ 0.7773 [1.49, 0.02, 0.05]T [2.54, 0.12, 0.41]T

i0 = 120◦ 0.9671 [1.53, 0.02, 0.03]T [2.54, 0.11, 0.27]T

i0 = 150◦ 1.0465 [1.68, 0.01, 0.03]T [2.54, 0.10, 0.27]T

Average 0.9570 [1.59, 0.02, 0.04]T [2.54, 0.12, 0.34]T

Table 6.7: Attitude control performance of non-learning MPC.

These evolutions are practically the same for both controllers, thus being in
accordance with Tables 6.6-6.7. In Fig. 6.12, which shows the applied torque
in the body frame, the higher torque demand of the non-learning MPC can be
easily seen.
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Figure 6.11: Pitch, roll and yaw for i0 = 90◦. Blue: learning-based
MPC; red: non-learning MPC; black: reference.

Initial orbit sensitivity analysis

Now, the sensitivity of the controllers, with respect to an initial orbit which
does not match the orbit reference, is studied. This may be a practical sce-
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Figure 6.12: Control torque for i0 = 90◦. Blue: learning-based MPC;
red: non-learning MPC.

nario where there exist an error in the orbit insertion. To this end, only the
initial semi-major axis will be varied as a0 = {33, 33.5, 34, 34.5, 35} km. For
the sake of conciseness, for each inclination, the average orbit control perfor-
mance results (by varying the initial semi-major axis) are shown in Table 6.8.
Typically, in exchange for a slight increase in fuel consumption (≈ 7%), the
learning-based MPC reduces the tracking accuracy index ∆R in a factor of
four. The maximum tracking error is also reduced. The gain in orbit control
performance for the learning-based MPC depends on the initial inclination,
but it is observed that the reference tracking accuracy is enhanced for all of
them. This demonstrates the superiority of the learning-based MPC for the
sensitivity analysis.

The orbital radius of each initial condition, for the initial polar orbit, is
shown in Fig. 6.13. It can be observed that the learning-based MPC succeeds in
tracking the reference orbit while the non-learning MPC ends with a persistent
tracking error offset in all cases. This evidences the learning-based MPC control
capability to reduce the initial tracking error even if the control program is
based on linearization around the reference orbit.
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Learning-based MPC Non-learning MPC

Simulation mF [kg] ∆R [m] ∆R [m] mF [kg] ∆R [m] ∆R [m]

i0 = 30◦ 1.7943 159.17 864.67 1.9668 1280.5 1829.2
i0 = 60◦ 1.3547 264.84 983.92 1.2640 284.90 921.90
i0 = 90◦ 1.4034 316.38 971.50 1.0903 797.04 1247.9
i0 = 120◦ 1.3378 167.35 840.81 1.1330 241.13 820.26
i0 = 150◦ 1.7447 129.85 847.83 1.6742 1390.8 1681.5
Average 1.5270 207.52 901.75 1.4257 798.87 1300.2

Table 6.8: Average orbit control performance of the learning-based
MPC and non-learning MPC for the sensitivity analysis.
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Figure 6.13: Orbital radius of the initial polar orbit in the sensitivity
analysis. Blue: learning-based MPC; red: non-learning MPC; black:
reference.



6.5 Numerical results 209

Filters performance

Let now assess the performance of the orbit and attitude filters for the initial
polar orbit simulation (i0 = 90◦).

Orbit filter: the navigation errors in position and the orbit filter residuals
are shown in Fig. 6.14-(6.15). It can be observed that the navigation error is
less dispersed for the radial coordinate (xO) than for the tangential (yO) and
normal (zO) components. This is mainly due to the higher observability of the
radial coordinate due to the LIDAR ranging measurement. Table 6.9 shows
the mean and maximum absolute navigation errors (e.g. |δxO|). It can be seen
that the results in the last two days outperforms the ones corresponding to the
whole scenario (14 m in average against 19 m). This demonstrates the filter
success in reducing the navigation errors which is mainly due to the gravity
estimation process convergence.

The filter consistency can be assessed through Table 6.10 which shows sta-
tistical information (bias and 1-sigma standard deviation) about the residuals.
It is observed that, for both the pixels and range, the residuals biases are one
or two order of magnitudes below their 1-sigma dispersions. This correlates
well with the non-biased statistical properties of the high-resolution camera
and LIDAR as per Table 6.2. Specially, the 1-sigma dispersion is highly corre-
lated in the case of the ranging distance (≈ 4 m with respect to the assumed
one of 5 m). In the case of the pixel row and column, the obtained dispersions
are three times higher than the introduced ones. However, they diminished
along the simulation if one compares the last two days to the overall scenario
(see also Fig. (6.15)). This may indicate that more room for improvement is
available if the filter is kept running for an extended duration of the scenario.

Days 1-14 Days 13-14

Navigation error Mean Max. Mean Max.

Radial [m] 1.7455 12.243 1.3531 6.2559
Tangential [m] 14.067 136.37 9.0449 33.459
Normal [m] 9.7575 80.250 8.4733 26.227
Total [m] 19.023 152.53 13.936 34.780

Table 6.9: Absolute navigation errors in position of learning-based
MPC for i0 = 90◦.

Attitude filter: the navigation errors in Euler angles and the attitude filter
residuals are shown in Fig. 6.16-(6.17). Since the star-tracker and gyroscope
measurements are directly related to the navigation variables, the estimation
error in Euler angles is low (< 0.2◦). Table 6.11 shows the mean and maxi-
mum value of the attitude navigation errors, in terms of Euler angles, and the
gyroscope bias estimation. The filter is demonstrated to be converging as the
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Figure 6.14: Navigation errors in radial, tangential and normal posi-
tion coordinates.

Figure 6.15: Orbit filter residuals of pixels and range.
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Days 1-14 Days 13-14

Residual Bias 1-sigma Bias 1-sigma

Pixel row [-] 0.1019 2.4239 -0.0696 1.5749
Pixel column [-] -0.1121 1.7373 -0.2088 1.4419
Range [m] 0.0158 4.2282 0.0598 4.4095

Table 6.10: Orbit filter residuals statistics of learning-based MPC for
i0 = 90◦.

mean and peaks are reduced when the whole scenario is compared to the last
two days. The gyroscope bias is well captured as the maximum committed
error during the days 13-14 is just 0.052%.

The filter consistency is assessed through the statistical information (bias
and 1-sigma standard deviation) of the attitude filter residuals, which can be
seen in Table 6.12. For both the star-tracker MRP and the angular velocity
of the gyroscopes, the biases are one or two order of magnitude below the
standard deviation. This correlates well with Table 6.2 where the only biased
variable is the gyroscope angular velocity which is estimated within the filter.
The 1-sigma standard deviations also show a good correlation with the sensors
Gaussian distribution. The gyroscope angular velocity 1-sigma was assumed
to be 0.05 ◦/h, on each component, which is in the vicinity of the obtained
values for the residuals
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Figure 6.16: Navigation errors in pitch, roll and yaw angles.
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Figure 6.17: Attitude filter residuals of star-tracker MRP and gyro-
scope angular velocity.

Days 1-14 Days 13-14

Navigation error Mean max Mean max

Pitch [◦] 0.0239 0.2318 0.0153 0.0587
Roll [◦] 0.0166 0.1363 0.0143 0.0447
Yaw [◦] 0.0426 0.3857 0.0191 0.0899
Gyroscope bias [◦/h] 0.0014 0.1265 0.0025 0.0026

Table 6.11: Absolute navigation errors in pitch, roll, yaw and gyro-
scope bias of learning-based MPC for i0 = 90◦.
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Days 1-14 Days 13-14

Residual Bias 1-sigma Bias 1-sigma

δσstar,1 [−] -2.125·10−8 7.851·10−6 -1.052·10−7 9.128·10−6

δσstar,2 [−] 8.334·10−8 7.830·10−6 -9.768·10−8 8.528·10−6

δσstar,3 [−] -6.633·10−8 7.945·10−6 -7.879·10−8 8.469·10−6

δωstar,1 [◦/h] -4.345·10−4 0.0510 5.291·10−4 0.0509
δωstar,2 [◦/h] 4.590·10−4 0.0541 -1.160·10−3 0.0548
δωstar,3 [◦/h] -2.734·10−3 0.0559 -4.179·10−3 0.0603

Table 6.12: Attitude filter residuals statistics of learning-based MPC
for i0 = 90◦.

Computational effort

Finally, let assess the computational burden of the proposed GNC scheme.
The computational times (mean, 1-σ standard deviation and maximum), of
filters and guidance and control algorithms, are shown in Table 6.13 for the
initial polar orbit simulation. In that table, MPC refers to the whole guidance
and control module. As expected, the execution of the guidance and control
algorithms is the most time-consuming task being two orders of magnitude
slower than the filters computation. The orbit modules (UKF and MPC)
execution times are higher than its attitude counterparts which is due, in part,
to their longer propagations periods. Translating the worst-case computation
as a percentage of the sampling rates yields 2.30% and 0.33% execution times
with respect to the period between filter calls for attitude and orbit respectively.
The guidance and control execution takes a 6.69% (attitude) and 1.04% (orbit)
with respect to their sampling rates. These results are promising in terms
of justifying the potential mission autonomy, at least for the orbit modules.
Nonetheless, the attitude modules computational burden may be reduced if
one renounces to estimate gravity within its filter. Then, the higher control
torque demand of the non-learning MPC would have to be assumed.

Mean 1-sigma Max.

Att. UKF 0.0482 s / 1.34% 0.8242·10−4 s / 0.02% 0.0827 s / 2.30%
Orb. UKF 0.0698 s / 0.19% 0.9421·10−4 s / 0.00% / 0.1171 s / 0.33%
Att. MPC 1.645 s / 4.57% 0.0134 s / 0.04% 2.408 s / 6.69%
Orb. MPC 3.721 s / 1.55% 0.0406 s / 0.02% 4.097 s / 1.71%

Table 6.13: Computational times and its percentage over the sampling
interval of the GNC modules for the learning-based MPC for i0 = 90◦.
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6.5.4 Gravity estimation with constellations of satellites

This section is devoted to demonstrate the positive impact in the gravity es-
timation by using a satellite constellation instead of a single spacecraft. The
following constellations are defined:

• 3 sats: ă[ι] = a
[ι]
0 = {34, 36, 38} km, ĕ[ι] = e

[ι]
0 = {0, 0, 0},

Ω
[ι]
0 = ω

[ι]
0 = ν

[ι]
0 = {0◦, 0◦, 0◦}, i[ι]0 = {45◦, 90◦, 135◦}, ι = 1, 2, 3.

• 6 sats: ă[ι] = a
[ι]
0 = {31, 33, 35, 37, 39, 41} km, ĕ[ι] = e

[ι]
0 = {0, 0, 0, 0, 0, 0},

Ω
[ι]
0 = ω

[ι]
0 = ν

[ι]
0 = {0◦, . . . , 0◦}, i[ι]0 = {15◦, 45◦, 75◦, 105◦, 135◦, 165◦},

ι = 1, . . . , 6.

• 9 sats: ă[ι] = a
[ι]
0 = {28, 30, 32, 34, 36, 38, 40, 42, 44} km,

ĕ[ι] = e
[ι]
0 = {0, . . . , 0}, Ω[ι]

0 = ω
[ι]
0 = ν

[ι]
0 = {0◦, . . . , 0◦},

i
[ι]
0 = {18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦}, ι = 1, . . . , 9.

Note that the constellations orbits are circular with a significant separation
between satellites (2 km) in order to prevent potential collisions. The term
“satι” denotes each satellite in the subsequent figures. The trajectories of
the 9 sats constellation are shown in Fig. 6.18-6.19 respectively. Figure 6.18
represents the satellite trajectories in the asteroid centered inertial frame where
the nodal precession phenomena is clearly seen. This is due to the decision of
not controlling the right ascension of the ascending node. Figure 6.19 shows
the satellite trajectories in the asteroid centered fixed frame. This validates
that the satellites do not collide with the asteroid while providing insight of
the asteroid overflown regions.

The orbital radius and inclinations, for the 9 sats constellation, are rep-
resented in Fig. 6.20. The orbital radius evolution shows convergence to the
reference after some transient time for all the satellites. The initial transient
period will be related to the gravity estimation process in the sequel. More-
over, it can be seen that the initial tracking errors are higher in lower asteroid
orbits where the inhomogeneous gravity field effects are stronger. The orbital
inclination is maintained constant in average through the simulation, which is
partly due to the decision of not applying out-of-plane control. Under such
condition, the natural perturbations do not affect, in average, the orbital in-
clination. This is an interesting fact as the asteroid overflew latitudes can be
chosen (at a certain extent) beforehand with the initial inclination i0.

For the 9 sats constellation, each satellite orientation (in terms of Euler
angles) of the body with respect to the orbital frame is shown in Fig. 6.21.
The roll and yaw are driven to the reference (null value) in average for all the
satellites. Nonetheless, a tracking error offset (0.4◦ − 2.5◦) arises in the pitch
angle for all of them (this was expected in light of Table 6.6). The tracking error
offset intensifies as the satellite orbits closer to the asteroid. This fact could
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be directly related to the stronger inhomogeneous gravity field perturbations
in the gravity-gradient torque for lower orbits.

In order to analyze the orbit control accuracy and fuel consumption perfor-
mance of each satellite, let observe the left illustration of Fig. 6.22. The orbit
reference tracking index shows no meaningful correlation with the reference
semi-major axis. This index can be assured to be below ≈ 400 m for all the
satellites while the initial inclination may also play a role (that is not analyzed)
on its tendency. The fuel consumption shows a clear decreasing trend as the
reference semi-major axis increases. This highlights the high influence of the
inhomogeneous gravity field perturbation in lower-asteroid orbits.

The joint estimation of the gravity parameters, of the 9 sats constellation, is
shown in Fig. 6.22-6.23. The second-order gravity converges rapidly while the
third and fourth-order gravity terms are much more slower. Nonetheless, the
1-sigma uncertainty follows a decreasing trend at all cases which confirms the
well-posed behaviour of the filters. The gravity estimation convergence process
is directly related to the convergence of the orbital radius to the tracking
reference as seen in Fig. 6.20. It can be deduced that the initial transient in
the orbital radius, with large initial tracking errors, is caused by the initial
inaccurate gravity model.

Figure 6.18: Trajectories in the asteroid centered inertial frame of the
9 sats constellation. Black dots: surface landmarks.

Finally, let compare the gravity parameters estimation between the satellite
constellation and the single satellite missions of Section 6.5.3. To do so, only the
estimation of the relevant gravity parameters is analyzed. A gravity parameter
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Figure 6.19: Trajectories in the asteroid centered fixed frame of the 9
sats constellation. Black dots: landmarks.
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Figure 6.20: Orbital radius (left) and inclination (right) of 9 sats
constellation.
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Figure 6.21: Pitch, roll and yaw of 9 sats constellation.
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Figure 6.22: Orbit reference tracking index, fuel consumption (left)
and second-order gravity parameters (right) of 9 sats constellation.
Dashed:truth; solid:estimation; dot-dashed:1-σ uncertainty.
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Figure 6.23: Relevant third-order (left) and fourth-order grav-
ity parameters (right) of 9 sats constellation. Dashed:truth;
solid:estimation; dot-dashed:1-σ uncertainty

is considered relevant if |C̃nm|, |S̃nm| > 2 · 10−3, such that

C̃20 = −5.2462 · 10−2, C̃22 = 8.2399 · 10−2, S̃22 = −2.8110 · 10−2,

C̃31 = 4.0602 · 10−3, C̃33 = −1.0416 · 10−2, S̃31 = 3.3685 · 10−3,

S̃33 = −1.2071 · 10−2, C̃40 = 1.2932 · 10−2, C̃42 = −1.7469 · 10−2,

C̃44 = 1.7455 · 10−2, S̃42 = 4.6291 · 10−3, S̃42 = −9.1053 · 10−3,

is the set of 433 Eros relevant gravity parameters. The spherical harmonics
that are below that threshold do not provide useful insight in the gravity es-
timation accuracy as their dynamical effect is weak. This causes them to be
less observable which usually results in random variations around very small
values.

The gravity parameters final estimation errors (δC̃f
nm, δS̃f

nm) (see Eq. (6.65))
and convergence times (tĈnm

, tŜnm
) (see Eq. (6.66)) are shown in Tables 6.14-

6.16. When no convergence is acquired for a gravity parameter, because its
estimation error is not below the 20% threshold, a “no” is marked in the cor-
responding field of the table. The second-order gravity estimation results are
shown in Table 6.14. The final estimation errors of these parameters are al-
ways below 2.5% except for S̃22 in the initial polar orbit case. Moreover, the
convergence is always acquired during the first week of the simulation for all
the single satellites (except from the previous exception) and during the first
two days for the constellations. This fact evidences the superiority of the satel-
lite constellation as it provides a faster convergence in the gravity estimation.
Moreover an outlier, such as S̃22 for the initial polar orbit, has not appeared
in any of the constellations.

The third and fourth order gravity estimation results are shown in Tables
6.15-6.16. The first issue that one observes is that many of the third and
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fourth order gravity parameters (C̃31, C̃33, C̃44, S̃42 and S̃44) fail to achieve
convergence for the single satellites. On the contrary, the 6 sats and 9 sats
constellations acquire convergence for all the relevant gravity parameters with
final estimation errors below 20%. Note that the 3 sats constellation does
not acquire convergence of some parameters. In any case, the accuracy of the
third and fourth order gravity terms can be considered poor when compared to
the second-order ones. As an example, the 9 sats constellation provides final
estimation errors below a 5% for just five (C̃33, S̃31, S̃33, C̃42 and C̃44) of the
nine relevant parameters. This confirms that the estimation of higher order
gravity terms is more challenging because their dynamical effect is weak when
compared to second-order gravity (augmenting an order makes the perturbing
acceleration to decrease in a factor of 1/r as deducted by Eq. (2.14)). This
causes the higher order gravity terms to be less observable and prone to absorb
uncertainty coming from other sources (e.g. solar radiation pressure, Sun third-
body perturbation).

The analysis of the gravity estimation results has proven that second-order
gravity is estimated accurately for both single satellite and constellations (er-
rors below 2.5% except from an outlier). However, satellite constellations are
able to speed up the estimation convergence in 2 to 3.5 times faster. The
third and fourth order gravity estimation was more challenging to estimate
and the results were worst in general. In particular, single satellites usually
failed (except the i0 = 30◦ case) to achieve convergence for these parameters,
thus yielding inaccurate estimations above a 20% of error.

Simulation δC̃f
20[%] tC̃20

[h] δC̃f
22[%] tC̃22

[h] δS̃f
22[%] tS̃22

[h]

i0 = 30◦ 0.2027 6.4 0.5796 6.5 2.2642 74.8
i0 = 60◦ 0.6010 2.0 0.0815 1.3 1.3459 7.8
i0 = 90◦ 0.1482 1.9 0.1400 1.7 7.3956 193.1
i0 = 120◦ 0.1856 2.5 0.5236 0.6 0.6305 38.5
i0 = 150◦ 0.3760 3.5 0.2751 0.5 2.2060 34.1
Average 0.3027 3.3 0.3200 2.1 2.7684 69.7

3 sats 0.3490 1.7 0.6779 0.8 2.4628 43.2
6 sats 0.5284 1.7 0.3093 1.0 1.1560 5.7
9 sats 0.4747 1.7 1.6169 1.0 0.2184 6.0
Average 0.4507 1.7 0.8680 0.9 1.2719 18.3

Table 6.14: Relevant second order gravity parameters estimation.
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7.1 Conclusions

This dissertation has designed multiple model predictive controllers for four
space applications. These include: spacecraft rendezvous with coupled orbit-
attitude control; spacecraft rendezvous in cislunar space; spacecraft rendezvous
hovering phases; orbit-attitude station-keeping in the vicinity of a small body.
The main goals of this thesis were: 1) to develop optimal closed-loop control
algorithms; 2) to compare the control accuracy and efficiency of the proposed
techniques with other state-of-the-art approaches; 3) to assure the problem is
feasible and the computational burden is moderate; 4) to test the developed
techniques with scenarios of interest in spacecraft proximity operations. To
achieve the previous objectives, a profound literature review of the problems
of interest have been done. This has led to the consideration of different con-
trollers for each application. However, the baseline of the specific approach, for
each scenario, is model predictive control. Model predictive control is a closed-
loop control technique relying on the prediction of the future state by using
a model of the system. This allows to compute an optimal control sequence
over a future control horizon, but only the first control is applied. Recursively
updating the control sequence as the time advances closes the loop. From
a computational perspective, the optimization process is the critical part of
model predictive control. In space applications, the dynamics is non-linear due
to the main bodies gravity which increases the complexity of the optimization
problem. In order to obtain a finite tractable and computationally efficient op-
timization program (usually in a quadratic programming form), which are the
key ingredients of autonomous systems, linearization and discretization tech-
niques have been widely employed for the closed-loop control computation.
The feasibility of the optimization problem has been achieved by transforming
the terminal equality constraints into penalty terms for the objective function
(constraints relaxation).

The previous approach has led to innovative advances over other state-
of-the-art control techniques in the literature. As a matter of fact, the devel-
oped algorithms and their associated results have been published in prestigious
journals [Sanchez20b, Sanchez20a, Sanchez21a], with [Sanchez20c] still under
review, and conferences proceedings [Sanchez18, Sanchez19, Sanchez21b] of
the aerospace engineering research field. The presented scientific and tech-
nical advances offer novel options to achieve higher levels of autonomy and
robustness in the context of spacecraft proximity operations. Under the ap-
proach mentioned in the above paragraph distinct control methodologies have
been employed for each space application. These comprise flatness theory, the
chance-constrained robust approach, event-based control and learning-based
control. Each scenario has been tested under the presence of disturbances in
order to analyze the robustness of the closed-loop response. The obtained re-
sults with the developed model predictive controllers have been compared with
respect to other state-of-the-art controllers. The highlights of each one of the
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developed controllers are:

• Six-degrees of freedommodel predictive control for Keplerian-based space-
craft rendezvous, Chapter 3, [Sanchez18, Sanchez20b].

– The attitude flatness property and transition matrix of the Keple-
rian linear relative motion have been exploited to obtain an inte-
grated six-degrees of freedom model predictive controller.

– The control loop was closed by linearizing the system around the
initial solution of the open-loop non-linear program. This results in
a quadratic program.

– The method supports any number of impulsive thrusters and inertia
matrix. The simulations have been carried out for a heavy cargo and
a lightweight spacecraft.

• Chance-constrained model predictive control for near-rectilinear halo or-
bits rendezvous, Chapter 4, [Sanchez20a].

– A linear relative motion model for the restricted three-body prob-
lem was used in order to design a robust control for spacecraft ren-
dezvous.

– The chance-constrained approach guarantees line-of-sight constraints
satisfaction in a probabilistic sense. An on-line estimator is used to
compute the disturbance statistical properties.

– The robust controller satisfied line-of-sight constraints in ≥ 80% of
the simulations while a non-robust controller only achieves < 10%
of constraints satisfaction.

• Event-based predictive control for spacecraft rendezvous hovering phases,
Chapter 5, [Sanchez19, Sanchez21a].

– By combining a single-impulse control with a set of trigger rules,
an aperiodic local controller to station-keep a set of constrained
periodic relative orbits is developed.

– The well-posedness and invariance of the single-impulse control is
demonstrated by using reachability concepts from hybrid impulsive
systems theory.

– The event-based controller is tested against Earth’s oblateness and
atmospheric drag perturbations. The control accuracy and compu-
tational efficiency outperforms a recent periodic global stable con-
troller.

• Learning-based model predictive control in the vicinity of a small body,
Chapter 6, [Sanchez21b, Sanchez20c].
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– Combining unscented Kalman filtering with model predictive con-
trol, a learning-based scheme has been designed to station-keep a
circular orbit with a stationary attitude.

– The recursive update of the prediction model enhances control ac-
curacy over time. A satellite constellation concept is also shown to
speed up the gravity estimation process.

– When compared to a non-learning controller, the developed learning-
based predictive control demonstrated a superior performance in
terms of orbital reference tracking accuracy (at the expense of a
slight increase in fuel consumption) and attitude control efficiency.

Overall, the developed controllers of this dissertation have shown to achieve
superior performances than other state-of-the-art or recent control approaches
in the literature. Being related to the proximity operations domain, the ben-
efits of the presented approaches are mainly related to the control accuracy
in terms of constraints satisfaction using a moderate or low computational
footprint (linear and quadratic programs with very reliable state-of-the-art
solvers). However, the control effort usually increases to acquire higher levels
of mission safeness. In the context of a space mission, fuel consumption for
the proximity operations phase is usually a small percentage of the total one
(e.g. orbit transfers). Under the previous consideration, the developed control
methodologies and their results contribute to enable higher levels of autonomy
in space proximity operations where a constraint violation could result in a
catastrophic loss of the mission (e.g. a collision).

7.2 Future work

The work carried out in this dissertation opens up several research directions.
In this section, the most promising ones are presented:

• The developed controllers for six-degrees of freedom rendezvous, hovering
phases and orbit-attitude station-keeping in the vicinity of small bodies
are not inherently robust. These controllers may be extended to robust
control forms such as the chance-constrained approach of Chapter 4. In
six-degrees of freedom rendezvous and hovering phases which rely on im-
pulsive control, a main source of uncertainty is the thrusters actuation.
In the first case, a similar approach to the chance-constrained one may
be employed as it is expected that these mishaps are biased. If the bias is
inferred, the line-of-sight constraints could be tightened accordingly. By
doing so, the controller would be able to cope with higher levels of distur-
bance. In the event-based controller for spacecraft rendezvous hovering
phases, under the possibility of an impulse mishap, it will be interesting
to compute a single-impulse that maximizes the probability of steering
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back the state to the set of relative constrained periodic orbits. The cur-
rent methodology just minimizes the impulse amplitude which may left
the state very close to the admissible set boundary. As a consequence,
an impulse mishap could cause the control to fail in reaching the admis-
sible set. Finally, for the learning-based approach, a superior reference
tracking accuracy could be achieved if not only the mean of the tracking
error is minimized but a combination with its own spread over time. In
that sense, the filter provides useful information of the state and model
parameters uncertainty that is currently unused.

• Under the restricted three-body problem, the spacecraft proximity op-
erations literature is still an emergent (though very rapidly) field when
compared to the well-studied Keplerian relative motion. Specifically, for a
near-rectilinear halo orbit, the relative dynamics response highly depends
on target position along its orbit. Around the apoapsis, with respect to
the secondary, the natural relative dynamics is so slow that the natural
relative trajectory is a straight line. The problem becomes more inter-
esting if the proximity operation takes place in the periapsis where the
natural relative motion is faster. Under the previous consideration, the
control is specially challenging in the vicinity of the target periapsis. In
that line, mastering the hovering phase in the context of the restricted
three-body problem can be viewed as future work. In order to do so,
there are multiple lines of work that need to be explored. The restricted
three-body problem orbits does not admit, in general, a mathematical
closed-form expression as their Keplerian counterparts (e.g. ellipse). In-
stead, a table of numerical positions and velocities is provided. Since the
orbit is periodic, the state can be fitted into a mathematical expression
(e.g. Fourier series). Using that mathematical expression of the orbit, an
explicit solution (though cumbersome) of the resulting linear relative mo-
tion system could be found. Then, by cancelling the non-periodic terms,
some conditions for relative periodic orbits can be stated. These can be
made to lie within a region in the relative space by constraining their
amplitudes. The final step would involve the design of a controller to
station-keep the set of relative constrained periodic orbits in the context
of the restricted three-body problem.

• Regarding, learning-based model predictive control in the vicinity of
small bodies, several future work is identified. The direct use of modified
equinoctial elements may lead to fuel expenditure in cancelling short-
periodic variations. The extension of the methodology to control mean
modified equinoctial elements may reduce considerably the current fuel
consumption needs. The presented work is view as a proof of concept of
the learning-based control concept, thus it did not dig excessively in all
the uncertain variables of a small body (just its inhomogeneous gravity
field). In that line, the estimation of the small body mass, its rotation
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state, the landmarks position and the solar radiation pressure effect on
the satellite may be added. This increase in the uncertainty of the system
may be dampened by considering more optimistic (the analyzed scenario
considered them as initially unknown) initial estimates of the inhomo-
geneous gravity parameters. This can be enabled by the preliminary
knowledge of the asteroid shape (via shape images or lightcurves infor-
mation). From the estimation perspective, the use of a Kalman filter
is a conservative choice, though a sound state-of-the-art tool, as there
may be recent advances in machine-learning that are worth exploring.
The model-learning process is an inverse problem where one aims to in-
fer the model parameters according to some data acquired by sensors.
In that sense, artificial neural networks could be adapted to a guidance,
navigation and control scheme by a batch computation combined with a
state-of-the-art filter for fast estimations.
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[Chen98] H. Chen and F. Allgöwer. A Quasi-Infinite Horizon Nonlin-
ear Predictive Control Scheme with Guaranteed Stability.
Automatica, 34(10):1205–1217, 1998. doi:10.1016/S0005-
1098(98)00073-9.

[Cheng18] A. Cheng, A. Rivkin, P. Michel, J. Atchison, O. Barnouin,
L. Benner, N. Chabot, C. Ernst, E. Fahnestock, M. Kuep-
pers, P. Pravec, E. Rainey, D. Richardson, A. Stickle, and
C. Thomas. AIDA DART asteroid deflection test: Plane-
tary defense and science objectives. Planetary and Space
Science, 157:104–115, 2018. doi:10.1016/j.pss.2018.02.015.

[Chupin17] M. Chupin, T. Haberkorn, and E. Trélat. Transfer Between
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Appendix A

B-splines

A B-spline function is a combination of basis functions passing through a num-
ber of points, named control points, and creates smooth curves. B-splines
functions are able to define flexible trajectories with a high continuity degree
and a low number of parameters (see [Kress98] for more details about them).
The B-splines domain is subdivided by knots and its basis functions are non-
zero on a few adjacent intervals. As a result basis functions are quite “local”.

Define tknots : {t0 ≤ t1 . . . ≤ tm} as a set of non-decreasing numbers. The
components ti of the previous set are called knots, the set tknots is the knots
sequence and the half-open interval [ti, ti+1) is the ith knot span. Note that a
knot ti can be repeated k times (multiple knot of multiplicity k). The B-spline
basis function are defined by its degree q through the following recursion

Bi,0(t) =

{
1, t ∈ [ti, ti+1),

0, t /∈ [ti, ti+1),

Bi,q(t) =
t− ti

ti+q − ti
Bi,q−1(t) +

ti+q+1 − t

ti+q+1 − ti+1
Bi+1,q−1(t).

(A.1)

Remark A1: a basis function Bi,p is non-zero on q + 1 knots spans that
are adjacent as [ti, ti+1) . . . [ti+q, ti+q+1). Equivalently, at most q+1 basis func-
tions (of degree q) are non-zero on any ith knots span.

Given n control points {c1, c2 . . . cn} and a knots sequence tknots, the B-
spline curve of degree q defined by these control points and knots is

f(t) =

nc∑
i=1

Bi,q(t)ci. (A.2)

Remark A2: B-splines intrinsically assure continuity up to Cq. The knots,
control points and degree must satisfy m = nc + q + 1.

An usual interpolation requirement is that the B-spline curve, f(t), value
and derivatives at the beginning, t0, and end domain, tf , are prescribed (in
terms of ci). This can be accomplished by repeating q+p+1 times the initial,
t0, and final, tm, knots being p the desired order of the prescribed derivative.

Let show an example for a scalar B-spline function f . Let define the fol-
lowing knots sequence:

tknots = [0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]T . (A.3)
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c1 c2 c3 c4 c5 c6 c7
0.6294 0.8116 -0.7460 0.8268 0.2647 -0.8049 -0.4430

Table A.1: Control points for cubic B-spline.

If a cubic continuity is desired, that is q = 3, the number of control points
should be nc = 7 according to Remark A2. For this situation, the B-splines
basis functions are shown in Fig. A.1.
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1

Figure A.1: B-splines cubic basis functions.

Let now assess the continuity property by inserting the randomly chosen
control points of Table A.1. The result is the B-spline function f of Fig. A.2.
The derivatives of this function, up to the third, have been also plotted. It is
confirmed that the function maintains its continuity up to its second derivative
being its third derivative formed by step functions as expected for a cubic B-
spline.
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Figure A.2: Example of a cubic B-spline function and its derivatives.
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Appendix B

Periodic orbits in the CRTBP

Let assume the natural dynamics of the circular restricted three-body problem
(see the paragraph third bodies gravity of Section 2.1.1 for the definition of the
variables) which are expressed in the synodic frame S as

ẍ =ω2x+ 2ωẏ − µ1(x+ βD)

r31
− µ2[x− (1− β)D]

r32
,

ÿ =ω2y − 2ωẋ− µ1y

r31
− µ2y

r32
,

z̈ =− µ1z

r31
− µ2z

r32
.

(B.1)

The previous system has five libration points (namely the Lagrange points).
All of them are contained in the primaries orbital plane xy: three of them, L1,
L2 and L3, are placed along the line (x) uniting the primaries; the remaining
two, L4 and L5, are placed in an equilateral triangle whose vertexes are the
primaries and the Lagrange point. These are shown in Fig. B.1. The blue
arrows indicates the decreasing direction of the potential energy while the red
arrows from where it augments. In that sense, the collinear Lagrange points
(L1, L2 and L3) are placed in a saddle while the L4 and L5 lie in the top of a hill.
This causes the collinear Lagrange points to be unstable while the L4 and L5
are stable if the relation between the primaries masses satisfiesM1/M2 ≥ 24.96.
An interesting feature is that the Lagrange points are surrounded by periodic
orbits (also unstable) on their vicinity. To find them, the symmetry of the
problem with respect to time is exploited. It can be deduced that the CRTBP
dynamics of Eq. (B.1) is invariant under the following transformation

{x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)} → {x(−t),−y(−t), z(−t),
− ẋ(−t), ẏ(−t),−ż(−t)}, (B.2)

which means that a trajectory lying on one side of a y ≡ constant plane, has a
mirror image on the other side of the plane evolving backwards in time. Then,
a trajectory whose initial coordinate is perpendicular to the y plane (ẏ(0) = 0)
has to be connected with its symmetric counterpart forming a single path.
This fact, combined with the linearized motion around the Lagrange points,
is usually exploited to compute CRTBP periodic orbits, r(0) = r(T ). These
initial orbits can be expanded through numerical continuation methods yielding
several families of periodic orbits in the CRTBP context (see [Doedel07] for the
details):
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Figure B.1: Lagrange points of the Sun-Earth system. Credits:
NASA/WMAP Science Team.

• Planar Lyapunov families at L1, L2, L3 / L4, L5 (short and long periods).

• Vertical families at Li, i = 1 . . . 5.

• Halo families at L1, L2 and L3.

• Backflip families from vertical L1, L2 and L3.

• W4/W5 families from vertical L4/L5.

• Circular families from vertical L1 and L2/L3.

• D1, E1 and R2 families.

The CRTBP dynamics Eq. (B.1) is symmetric with respect to the xy plane

{x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)} → {x(t), y(t),−z(t), ẋ(t), ẏ(t),−ż(t)}, (B.3)

which causes the existence of southern (−z) and northern (+z) orbits for each
family.

Near-rectilinear halo orbits: amongst the previous families, the halo orbits
have been the most employed one in space exploration. The halo orbits emerge
vertically (along the z direction) in the vicinity of the collinear equilibriums.
This is convenient for communication purposes because line-of-sight with the
two primaries, due to its out-of-plane component, is guaranteed. Due to the
symmetry with respect to the xy plane (see Eq. (B.3)) each halo orbit has a
northern and southern branch. Being placed in the vicinity of the collinear
Lagrange points, the halo orbits are inherently unstable. This means that a
satellite would require frequent corrections to maintain its orbit.
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For mission design, an interesting aspect is to quantify how unstable an
orbit is. For that purpose, the eigenvalues of the monodromy matrix (the
state transition matrix evaluated after one period ΦΦΦ(T, 0) ∈ R6×6) provide
useful information. The CRTBP system Eq. (B.1) is conservative because
only gravity forces (which are derived from a potential) are present. For a
conservative system, the determinant of its monodromy matrix determinant
must be equal to the unity (as well as the product of their eigenvalues), hence
it can be demonstrated that the

λ1 =
1

λ2
∈ R, λ3 = λ4 = 1, λ5 = λ̄6 ∈ C with λ5λ̄5 = 1, (B.4)

where λi refers to each eigenvalue. Consequently, there are two real reciprocals
eigenvalues, two equal to the unity and two complex ones lying in the unit
circle of the complex domain. The fact that one of the monodromy matrix
eigenvalues is above the unity, indicates the unstable behaviour of the halo
orbits. This eigenvalue characterizes the orbit tendency towards instability.
When its value is closer to the unity (marginally stable case), the orbit would
need a longer period of time to be unstabilized. This is an attractive feature
as such orbit would need a lesser station-keeping control effort. Under the
previous considerations, [Zimovan17] proposed the following stability index

κ =
1

2
(|λ1|+ |λ2|), (B.5)

where κ ≥ 1 being the case κ = 1 marginally stable and κ > 1 unstable. An
orbit with a higher value of its stability index is more prone to be unstabilized
in a fewer period of time.

The stability index defines the near-rectilinear halo orbits. The NRHOs are
a subset of the halo family defined by the fact that their stability indexes are
bounded (close to the unity). It is unclear how to exactly choose the interval
of stability indexes in order to obtain the NRHOs. Let assume the NRHOs
are the halo members satisfying 1 ≤ κ ≤ 3. Under the previous consideration,
the L2 southern NRHOs of the Earth-Moon system are depicted in Fig. B.2.
The whole family of southern halos has been also represented. The position
coordinates are adimensionalized with the mean distance between the Earth
and Moon, D = 384400 km. The stability indexes and orbital periods for the
L2 southern NRHOs of the Earth-Moon system are shown in Fig. B.3. It can
be observed that there is a region where the stability index is almost the unity
and then suddenly increases with the perilune altitude. The orbital periods
oscillate between 6 and 11 days which is an order of magnitude higher than
Keplerian geocentric orbits. Two orbits have been highlighted in Fig. B.2-B.3.
These correspond to the ones whose orbital periods are in 4:1 and 9:2 resonance
with the Moon synodic period (29.5 days). These orbits offer to avoid eclipses
with the Moon and Earth shadows by using an appropiate phasing. As a
matter of fact, a 4:1 Earth-Moon L2 southern NRHO is the chosen destination
to place the LOP-G (see [Whitley16]).
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Figure B.2: Southern halos of the Earth-Moon L2.
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Figure B.3: Stability indexes and orbital periods for the southern
halos of the Earth-Moon L2.



Appendix C

Implicitization of
trigonometric functions

Implicitizing a parametric function refers to remove the independent variable in
order to obtain an expression for its geometrical shape. In the case of functions
parameterized by means of trigonometric terms (cosines and sines), [Hong95]
developed a general implicitization method as shown in Algorithm 6. Note
that the polynomial coefficients in step 4 are complex variables.

Algorithm 6: Implicitization method for trigonometric functions

1 begin
2 Rearrange the expressions into:

x(t) = cx +
mx∑
m=1

axm cosmt+ bxm sinmt,

y(t) = cy +
my∑
m=1

aym cosmt+ bym sinmt;

3 Apply the following change of variable: cosmt← (wm + w−m)/2,
sinmt← (wm − w−m)/2i;

4 Rearrange the resulting expressions into polynomial forms:

xwmx −
mx∑
m=0

dxmw
m, ywmy −

my∑
m=0

dymw
m;

5 Form the Sylvester’s matrix with the polynomial coefficients
S ≡ S(x, y, dxm , dym);

6 The determinant of the Sylvester’s matrix yields the implicit

equation: det(S) =
mx∑
j=0

my∑
k=0

cjkx
jyk = 0;

7 end

Now, an example of the implicitization method, as given by Algorithm 6,
is shown. Let consider the following inequality

cos ν

1 + e cos ν
d4 +

sin ν

1 + e cos ν
d5 ≤ y, (C.1)

where: ν is the independent variable; d4 and d5 are the parameterized variables;
the terms e and y are constants. It may be of interest to obtain a formal
geometrical description of the inequality envelop. This allows to describe the
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feasible region ∀ν ∈ [0, 2π]. The envelope is characterized by the frontier of
the inequality and its derivative (with respect to the independent variable) as

d4 cos ν + d5 sin ν − y(1 + e cos ν) = 0,

−d4 sin ν + d5 cos ν + ey sin ν = 0,
(C.2)

which can be rearranged to clear d4 and d5 explicitly (step 2)

d4 = y(e+ cos ν),

d5 = y sin ν.
(C.3)

It is evident that it represents a circle of radius y with center (ey, 0) (which
serves to verify the result). Let apply the change of variable from ν to w (step
3)

d4 = y

[
e+

w2 + 1

2w

]
,

d5 = y
w2 − 1

2iw
,

(C.4)

which can be explicitly expressed as a polynomials in w as (step 4)

yw2 + 2(ey − d4)w + y = 0,

yw2 + 2id5w − y = 0.
(C.5)

Now let form the Sylvester matrix of the previous polynomials in w (step 5)

S =


y 2(ey − d4) y 0
0 y 2(ey − d4) y
y 2id5 −y 0
0 y 2id5 −y

 , (C.6)

then by computing the determinant of the Sylvester matrix (also namely as
the resultant of the polynomials)

det(S) = −4e2y4 + 8d4ey
3 − 4d24y

2 − 4d25y
2 + 4y4, (C.7)

and by equalling that expression to zero, the implicitized equation is found
(step 6)

(d4 − ey)2

y2
+

d25
y2

= 1. (C.8)

The resulting implicitized equation is a circle with a center offset in d4 as
expected from Eq. (C.3). For e = 0.2 and y = 25, the family of inequalities
and its associated implicitized envelope function is shown in Fig. C.1.
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Figure C.1: Result of the implicitization.
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Appendix D

Global stable impulsive
control for spacecraft
rendezvous hovering phases

This appendix summarizes the main result of the manuscript [Arantes-Gilz19].
In that publication, a model predictive controller was developed and proven
to globally stabilize a set of constrained relative periodic orbits (admissible
set). The hovering region was a cuboid, in terms of Cartesian relative position
coordinates, of dimensions {x, x, y, y, z, z}. Let recall that the global stability
property is demonstrated under Keplerian linear relative motion assumptions
(if follower and leader have a large initial separation, this linear model is not
accurate). The details of the stability proof can be found in [Arantes-Gilz19].
The vector of parameters d = [d0, d1, d2, d3, d4, d5]

T for Keplerian relative mo-
tion is exploited. This state has its own transition as

d(ν) = ΦΦΦD(ν, ν0)d(ν) +
N∑
j=1

ΦΦΦD(ν, ν0)BD(ν)∆V(νj),

ν ≥ ν0, ν0 ≤ ν ≤ νj .

(D.1)

The global stable controller uses an initial single-impulse to steer the state to-
wards a periodic relative orbit (d0 = 0) and a subsequent number of N impulses
driving the state to the admissible set along the plane d0 = 0. Consequently,
the state evolves in relative periodic orbits. An impulse structure fullfiling the
previous requirement is as follows

∆V =

 λxze sin ν/(1 + e2 + 2e cos ν)
∆Vy

λxz(1 + e cos ν)/(1 + e2 + 2e cos ν)


︸ ︷︷ ︸

λxzB⊥
d0

(ν)+∆Vy

+

∆Vx,0

0
∆Vz,0


︸ ︷︷ ︸

∆V0

, (D.2)

where the first part of the right-hand side does not alter the state d0 while the
second part is employed to nullify d0.

A single-impulse instantaneously nullifying d0 has to fulfil

d+0 = d0 +Bd0(ν)∆V0 = 0, (D.3)
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where Bd0 ∈ R1×3 is the first row of the control matrix BD. A possible choice
is given by the pseudoinverse of Bd0

∆V0 = −d0(BT
d0(ν)Bd0(ν))

−1BT
d0(ν). (D.4)

Once the follower has been inserted in a relative periodic orbit by using Eq. (D.4),
the state is steered towards the admissible set. In the steering process, the state
is constrained to evolve in the plane d0 = 0 which is achieved by designing im-
pulses with the structure of Eq. (D.2). Note that since d0 = 0, then ∆V0 = 0.
Under the previous facts, the solution of the following semi-definite linear pro-
gram produces an impulse sequence stabilizing the state towards the admissible
set

minimize
∆V⊖(νj),∆V⊕(νj),Yi

N∑
j=1

∥∆V⊖(νj)∥1 + ∥∆V⊕(νj)∥1,

subject to ∆V⊖(νj) ≥ 0, ∆V⊕(νj) ≥ 0,

∆V(νj) = ∆V⊕(νj)−∆V⊖(νj),

∆V(νj) = λxzB
⊥
d0(νj) + ∆Vy,

d+(νN ) = ΦΦΦD(νN , ν1)d(ν1)

+

j∑
j=1

ΦΦΦD(νN , νj)BD(νj)∆V(νj),

Yi ⪰ 0, i = 1 . . . 6,

γγγi = [tr(YiH2,1), . . . , tr(YiH2,5)]
T ,

γγγi = vit− (hi,xCx + hi,yCy + hi,zCz)d
+(νN ),

(D.5)

where ∆V⊖,∆V⊕ ∈ R3 are slack variables introduced to obtain a linear form
of the L1-norm. The number of impulses N and its application instants, νj ,
can be arbitrary as long as N ≥ 3 and their spacing in time is not a multiple
of the target orbital half-period. The matrices Yi ∈ R3 are decision variables
where each one corresponds to a polytopic constraint describing the hovering
region. The terms H2,i ∈ R3×3 are Hankel matrices with ones on the ith
anti-diagonal and zeros everywhere else. The vector γγγi ∈ R5 is filled with
the polynomial coefficients of the admissible set polytopic constraints. The
details of these coefficients can be found in [Deaconu15, Chapter 3] where
the hovering region polytopic constraints were transformed to an equivalent
polynomial form of degree 4th at most. As a consequence, the continuous
satisfaction of polytopic constraints is equivalent to polynomial positiveness
(which can be also equivalently transformed to a linear matrix inequality as
shown in program (D.5)). The polynomial coefficients are constructed using
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the following variables

Cx =


0 0 2− e 1 0 0
0 4− 2e 0 0 0 0
0 0 2e 2 0 0
0 4 + 2e 0 0 0 0
0 0 −2− e 1 0 0

 , Cy =


0 0 0 0 −1 0
0 0 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 1 0

 ,

Cz =


0 e− 1 0 0 0 0
0 0 2− 2e 0 0 0
0 −2e 0 0 0 0
0 0 2 + 2e 0 0 0
0 e+ 1 0 0 0 0

 , t = [1− e, 0, 2, 0, 1 + e]T ,

vi = {−x, x,−y, y,−z, z}, hi,x =


−1 if i = 1,

1 if i = 2,

0 if i = 3, 4, 5, 6.

hi,y =


−1 if i = 3,

1 if i = 4,

0 if i = 1, 2, 5, 6.

hi,z =


−1 if i = 5,

1 if i = 6,

0 if i = 1, 2, 3, 4.

Under the previous considerations, the controller commands an initial single-
impulse to insert the follower into a relative periodic orbit (see Eq. (D.4)).
Once the periodic relative orbit is acquired, a sequence of N impulses, com-
puted through program (D.2) steers the state towards the admissible set. The
Algorithm 7 summarizes the global stabilizing control strategy in a pseudocode
form. The steps 2-10 comprises the relative periodic trajectory generation
while the steps 11-21 stabilize the state to the admissible set. The impulse
sequence is assumed to be placed at equidistant true anomalies such that
νj = ν1 + (j − 1)τI , j = 1 . . . N, τI ̸= kπ, k ∈ N. The possibility of im-
pulses falling outside the feasible region (bounded by the saturation ∆V and
the minimum impulse bit ∆V ) has been considered in steps 5, 15 and 7, 17
respectively. This fact was not explicitly considered in the SDP problem D.5
for the sake of feasibility. In the saturated case, the impulse is scaled with
∆V . If an impulse fall below the minimum impulse bit, it is nullified. In
[Arantes-Gilz19], it was demonstrated that applying saturated impulses, along
the computed direction, steers the state closer to a relative periodic orbit or the
admissible set respectively. However, the controller stability in the presence of
a minimum impulse bit, ∆V > 0 was not demonstrated. The parameters τP
and τI are used to space the impulses in time. Intuitively, lower values of these
angles will assure a faster convergence at the expense of fuel consumption and
otherwise if they are higher.

The global stable controller convergence process to the admissible set is
schematically shown in Fig. D.1. A subset of the in-plane space is considered
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Algorithm 7: A global stable controller for spacecraft rendezvous
hovering phases

1 begin
2 while d0(ν) ̸= 0 do
3 Compute ∆V0(ν) with Eq. (D.4);

4 if ∥∆V0(ν)∥2 > ∆V then

5 ∆V0(ν)← ∆V∆V0(ν)/∥∆V0(ν)∥2;
6 else if ∥∆V0(νj)∥2 < ∆V then
7 ∆V0(νj)← 0;
8 Apply ∆V(ν)← ∆V0(ν);
9 Wait ν ← ν + τP ;

10 end
11 while d(ν) /∈ SD do
12 Obtain an impulse sequence ∆V(νj) by solving the SDP

problem (D.5);
13 for j = 1 . . . N do

14 if ∥∆V(νj)∥2 > ∆V then

15 ∆V(νj)← ∆V∆V(νj)/∥∆V(νj)∥2;
16 else if ∥∆V(νj)∥2 < ∆V then
17 ∆V(νj)← 0;
18 Apply ∆V(ν)← ∆V(νj);
19 Wait ν ← ν + τI ;

20 end

21 end

22 end
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as d0d2d3. First, a single-impulse generates a periodic trajectory (d0 = 0).
Subsequently a sequence of three impulses (a higher number of impulses could
also have been chosen) drives the state towards the admissible set along the
plane d0 = 0. Let recall that the periodicity condition d0 = 0 makes the state
invariant over time, thus the state only changes instantaneously (d+ = d+∆d)
when the impulses are applied at instants νj .

Figure D.1: Sketch of the global stable controller convergence.
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