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Abstract

This work outlines and assesses several methods for the detection of manoeuvres in Low Earth Orbit (LEO) from
surveillance radar data. To be able to detect manoeuvres, the main starting assumption is that the object under analysis
has an orbit known with a sufficient degree of precision. Based on the precise (a posteriori) orbit and radar data,
several manoeuvre detection methods are presented; one is based on unscented Kalman filtering, whereas two others
algorithms are based on reachability analysis of the state, which correlates its prediction set with the next track from
the radar. The filtering algorithm can be extended for several radar tracks, whereas the reachability-based methods are
more precise in detecting manoeuvres. Then, to inherit the best properties of both classes of algorithms, a manoeu-
vre detection filter that combines both concepts is finally presented. Manoeuvre detection results are presented first
for simulated scenarios—for validation and calibration purposes—and later for real data. Radar information comes
from the Spanish Space Surveillance Radar (S3TSR), with real manoeuvre information and high-quality ephemerides.
The results show promise, taking into account that a single surveillance radar is the only source of data, obtaining
manoeuvre detection rates of more than 50% and false positive rates of less than 10%.

1. Introduction

In the field of Space Surveillance and Tracking (SST),
accurate orbital determination and manoeuvre detection is
of upmost importance to infer objects orbital information
and their future behaviour, as well as to be able to carry
out tasks such as prediction of potential conjunctions with
operating satellites, taking avoidance orbital corrections,
predicting re-entries, identifying fragmentations or updat-
ing orbital elements of known satellites, among others.

Satellites performing unknown manoeuvres pose a
challenge when trying to associate the new collected ob-
servations (obtained by laser, radar, or by any other means
from the SST infrastructure) with the previously known
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reference orbits (which are stored in SST catalogues). In-
deed, one of the main motivations of manoeuvre detection
is that it can significantly reduce the number of uncorre-
lated targets detected by the SST sensors infrastructure.
Most of these uncorrelated objects are known satellites,
which have performed unpublished manoeuvres, in such
a way that their new orbits do not match with the predic-
tions.

This work develops several methods for the detection
of manoeuvres in Low Earth Orbit (LEO) from radar data,
providing first some preliminary numerical initial results
obtained from simulated orbits and radar data. Since the
final aim is to integrate these algorithms in the S3T (Span-
ish Space Surveillance Tracking) Cataloguing System in
order to provide routine automatic manoeuvre detection
capabilities to the system in the future, a validation of
all the algorithms is carried out with real tracks from
S3TSR (Gomez et al., 2019), the Spanish surveillance
radar developed, installed and validated by Indra with the
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funding of the Spanish Government under the technical
and contractual management of ESA on behalf of Cen-
tro de Desarrollo Tecnológico e Industrial (CDTI). Ma-
noeuvre information and ephemerides are obtained from
ESA/ESOC and DLR/GSOC to assess the results, for sev-
eral scenarios. The methods were implemented by mak-
ing use of the space-dynamics library Mainsonobe et al.
(2012).

The contribution of this paper, compared with other
existing works in the literature (Pastor et al., 2020), is
the development of algorithms and metrics that can work
with a single surveillance radar, providing a rather small
number of measurements (tracks are usually 5-20 plots),
large gaps in between tracks (1 to 3 days), in Low Earth
Orbit, and for moderately small manoeuvres. In addi-
tion, new manoeuvre probability metrics are derived and
tested, not only in simulation, but also with real data. Part
of these results were already presented in conference form
in Vazquez et al. (2021a,b).

The structure of this paper is as follows. After this brief
introduction, a literature review is performed for the two
main families of methods that can be used to detect ma-
noeuvres, namely: Kalman filters (based on orbit determi-
nation approaches) in Section 2, and reachability analysis-
based methods (which compare reachable predicted sets
with obtained measurements) in Section 3. The particu-
lar implementations selected for this work are presented
in Sections 4 and 5, respectively for each family, together
with some preliminary proof-of-concept results. Next val-
idation results are presented for simulated (Section 6) and
real scenarios (Section 7). Then, in Section 8 a manoeu-
vre detection filter based on a combination of filtering and
reachability is developed and its results presented. The
paper is concluded in Section 9 with some final remarks
and future work.

2. Manoeuvre detection filters

Manoeuvre detection filters (MDFs) employ orbit de-
termination in the process of detecting if some manoeuvre
has been performed; they are quite useful, since they are
able to correlate new (post-manoeuvre) orbits with pre-
vious (pre-manoeuvre) known orbits, thus paving the way
to perform orbit determination using quite fewer measures
(as compared to a conventional orbit determination prob-
lem). This fact is shown, for instance, in Goff (2015)

where the author compares the accuracy and cost of or-
bit determination using a manoeuvre detection filter on
known flying objects, versus a conventional (cold-started)
orbit determination procedure. At its simplest, a manoeu-
vre detection algorithm relies on Statistical Orbit Deter-
mination (SOD) methods (see Schutz et al. (2004) for a
general overview). Very much has been written about
the estimation and tracking of spacecraft using radar (or
laser) measures, and classical methods like the Batch
Least Squares (BLS) method, Extended Kalman Filter
(EKF), and the Unscented Kalman Filter (UKF)—and
even non-gaussian techniques like the Particle Filter—are
well known in the literature.

The problem with traditional methods arises when
the target performs unknown manoeuvres in-between the
measurements windows. Then, the propagated orbit in
which the estimation methods are based may become too
inaccurate (since they do not take into account the ma-
noeuvres) as they have become “overconfident” due to
their covariance becoming too small (a filter exhibiting
such behaviour is known as a “smug” filter). Thus, a ma-
noeuvring scenario may lead to severe outliers and con-
vergence problems in conventional filtering techniques;
there exist methods to handle these issues and enhance the
robustness of these classical algorithms, to avoid diver-
gence problems. For instance, some possible techniques
are covariance inflation or fading memory, among others.
These mechanisms would be activated if a manoeuvre is
detected; using the filter residuals, a decision logic can
be put in place to estimate when a manoeuvre has been
performed.

Although not considered for this work there exist so-
lutions with extra layers of complexity for problems with
highly unstructured uncertainty. These are the Multiple
Model filters, suited for tracking problems and based on a
family of elemental filters which can be designed to model
different aspects of the system behaviour, together with
a probabilistic mixing logic to select the best estimation
combining all the outputs of the elemental filters (Li and
Jilkov, 2005).

2.1. State of the art on manoeuvre detection filters
Next, a representative sample of MDFs from the litera-

ture are analysed.
Woodburn et al. (2003) presents a fixed interval

smoother for manoeuvre reconstruction; this algorithm
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gives a simple approach that consists of a sequential filter
used to move forward across the manoeuvre and a fixed
interval smoother to move backwards across the manoeu-
vre. The sequential filter serves to process all the tracking
data prior to the manoeuvre to provide an optimal pre-
manoeuvre state estimate and covariance. Radar data is
processed after the time of the manoeuvre until the un-
certainty in the state estimate returns to a normal non-
manoeuvre condition. The difference between the post-
manoeuvre and pre-manoeuvre smoothed states may now
be extracted as the estimate of the impulse (with covari-
ance information used to characterize manoeuvre uncer-
tainty). As drawback of this method it is assumed, with-
out guarantees, that the filter will quickly converge on a
good state estimate after a manoeuvre has passed.

A variable structure estimator is proposed in Guang
et al. (2018), where a manoeuvre detection metric is
used to design an estimator with an additional manoeu-
vre observer module, the so-called “variable structure es-
timator”. In this scheme an EKF is used together with
a manoeuvre observer (which is in turn triggered when
the manoeuvre detection metric reaches a certain thresh-
old). Then, the manoeuvre observer estimates the ma-
noeuvre acceleration, and sends that information to the
EKF, which takes into account the estimated acceleration
to improve the orbit propagation in its algorithm. The
“manoeuvre observer” is based on a simple first-order ob-
server, which produces an estimation of the acceleration
to be fed back to the EKF. The method is simple, but as-
sumes that radar measurements are always available (with
a frequency of 5 Hz) so that manoeuvres are always ob-
served; that would require having data from a very large
radar network.

A joint kinematic/dynamic filter is proposed in Ye et al.
(2021) (with simulations of three radars and a satellite in
a Medium Earth Orbit) and consists of two filters running
in parallel. The first and main filter is a traditional orbit
determination Kalman filter whereas the second filter is a
kinematic filter and utilizes some representative random
processes (with design parameters) to describe the orbital
motion. While the detailed motion is not captured at all,
the changes caused by orbital manoeuvres can be captured
by those flexible random processes, although it requires a
complex tuning.

A Filter-through and manoeuvre reconstruction ap-
proach is presented in Goff et al. (2015b) (see also Goff

et al. (2015a)). The results therein show that a filter-
through Interacting Multiple Model orbit determination
filter (EKF or UKF) can converge on a post-manoeuvre
orbit with similar performance to Initial Orbit Determi-
nation (IOD) approaches, based on multiple filters run-
ning with different levels of covariance inflation. Once
the post-manoeuvre orbit is known with a certain degree
of accuracy, to reconstruct a single manoeuvre, one deter-
mine the time when the orbits intersected or became very
close.

3. Reachability analysis

In this section the idea of Reachable Sets (RS) and
their analysis (Reachability Analysis, RA) is introduced,
as well as their relationship with control and estimation
of systems. The technique has been used, for instance,
in the context of rendezvous of spacecraft (Sanchez et al.,
2019), and has many applications in the area of safety for
trajectories of vehicles (Xu et al., 2019). This background
material constitutes the foundational framework for Sec-
tion 5.

Citing Holzinger and Scheeres (2009), “the concept
of reachability is central to Space Situational Awareness
(SSA),” which underscores the interest of this concept for
the present work. Reachability Analysis deals with the
study and applications of Reachable Sets, which are de-
fined as follows: given a system that evolves from an ini-
tial condition (or set of initial conditions), and possibly
has some control inputs, the reachable set is the set of
states at which the system can arrive (i.e., the states that
can be reached) at a given time.

To more formally define a RS, let us consider the sys-
tem governed by the differential equation ẋ = f (t, x, u)
(where x is the state, t the time and u a possible con-
trol input), which for a given initial condition and con-
trol spawns a trajectory x(t). This solution, if the de-
pendencies are explicit, defines the state trajectories flow
x(t) = ϕt,t0 (x0, u). Consider an initial set (instead of a
point) of initial conditions at t0, and denote it by Ω0. Con-
sider the set of all possible actuations U. Then, the RS
from Ω0 at time t, denoted as Ω(t), is defined (assuming
there are no collisions or singularities for the flow) as

Ω(t) = {x ∈ Rn : x = ϕt,t0 (x0, u), x0 ∈ Ω0, u ∈ U}. (1)
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Even in the linear case, the dependence on the con-
trol and initial conditions can make the computation of
these sets quite difficult. If the dynamics are non-linear
(as in orbital mechanics), a state transition matrix is not
available, and therefore the computation of reachable
sets becomes highly intensive (Kurzhanski and Varaiya,
2000). Our approach interprets the differential equation
in a stochastic sense (Jain et al., 2019), with initial con-
ditions given as a certain initial probability distribution,
so that one can consider the starting set Ω0 a confidence
region of that probability distribution, and the RS its evo-
lution, Ω(t). In principle, with six states (three pertaining
to position and three to velocity) that may have some de-
gree of uncertainty, one would require to propagate the
boundary of a six-dimensional closed manifold, as well
as the probability distribution function inside of it.

Thus, in this project a particle-based approach is ap-
plied instead (very much in the spirit of the Montecarlo
method), in which one samples the initial confidence re-
gion, to then propagate those sample points. Since a large
number of particles (trajectories) need to be propagated,
the use of differential algebra techniques such as Taylor
expansion over an initial condition can be employed in
order to obtain Ω(t) in a reasonable amount of time (see
Armellin et al. (2010) and Pérez et al. (2013)). Notice
that this in fact represents a higher-order approach than
the classical propagation of covariances (linear approach),
that rely on Jacobians and the assumption that Gaussian
distributions keep being Gaussian, which does not hold
true here since the non-linearity of the propagation “dis-
torts” the distribution, making it lose its Gaussian shape
(Holzinger and Scheeres, 2009).

In addition, one of the most interesting applications to
SST of reachability analysis is the problem of object cor-
relation. Looking at the literature, this problem has indeed
received considerable attention in the last years. There are
a number of metrics that can be used such as the Maha-
lanobis distance (Hall and Singla, 2019) and techniques
that can help when several measurements are present,
such as the use of attributables (Vananti et al., 2017; Reihs
et al., 2021), but these do not explicitly take into account
the possibility of manoeuvring objects, which is critical
since small orbital corrections can produce outsized state
discrepancies at the long term. This problem is tackled
in Singh et al. (2012); Holzinger et al. (2012) comput-
ing (by means of optimal control) the minimum possible

manoeuvre that connects the previous orbit with the new
measurements. In Siminski et al. (2017) this optimal con-
trol approach is compared with the use of historical data,
which is found more accurate when available (at least for
the GEO example considered in that paper) and if the ma-
noeuvres are predictable. These ideas are used in this
work to develop manoeuvre detectors.

4. An orbit determination filter with basic manoeuvre
detection capabilities

To decide which filter to develop for this work, it is im-
portant to take into account that the the Spanish survey
radar S3TSR (Gomez et al., 2019) is the only source of
measurement data considered for this project. Being a sin-
gle radar, this implies that objects will have long windows
without observation in-between, from about half a day up
to 3 days, and then a radar track, typically with 5-20 in-
dividual plots, will become available. Therefore, designs
relying on a large number of measurements and/or fre-
quent measurements are not implementable. The scheme
of Guang et al. (2018) is adapted, with manoeuvre detec-
tion based on residue analysis. As for the choice of the
filter type itself, the UKF seems to be the superior choice.
The rationale of this choice is as follows. Since an EKF
relies on linearisation to obtain the evolution of the state
error covariance, scenarios with long propagation times
such as the ones considered in this work may degrade its
accuracy, depending on the starting covariance. To over-
come this drawback, an UKF is considered instead, since
it provides a higher-order approximation for covariance
evolution which can withstand longer propagations. The
UKF is based on the “unscented transformation” first pro-
posed by Julier and Uhlmann (1997) and later improved
by Wan and Van Der Merwe (2000) to compute the first
two moments of the probability density distribution of a
random variable given by some transformation y = h(x),
assuming that the mean and the covariance of the variable
x are known. The idea behind the unscented transforma-
tion is to use a set of points xi (sigma-points) in such a way
that their mapping yi = h(xi) can be used to accurately ap-
proximate the exact mean and covariance of y (by using a
predefined set of weights).
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4.1. UKF algorithm
Considering a system with n states, given by the fol-

lowing process and observation equations

ẋ = f (x, t) , (2)

y = h (x, t) , (3)

and a set of weights to estimate the mean and the co-
variance (denoted by w( j)

m and w( j)
c respectively, for j =

1, . . . , 2n + 1), together with a tuning parameter κ (see
Goff (2015) for a description of the weights and the tuning
parameter values), the UKF algorithm is (obtained from
Goff (2015)):

1. Start from the previous estimate of the state and the
covariance of its error (x̂0 and P̂0 at first).

2. Read the next observation and its covariance:
ti, yi,Ri.

3. Perform the decomposition Pi−1 = AT A, and denote
a( j) as the j-th column of A.

4. Calculate the sigma points:

x̃( j)
i−1 = x̂i−1 + x̆( j), for j = 0, . . . , 2n, and x̆(0) = 0,

x̆( j) = a( j) √n + κ, for j = 1, . . . , n,

x̆(n+ j) = −a( j) √n + κ, for j = 1, . . . , n.
5. Propagate all the sigma points using numerical inte-

gration: Initial conditions x̃( j)
i−1, differential equation

ẋ = f (x, t), integration results x̃( j)
i .

6. Calculate the propagated a priori state and covari-
ance (adding the process noise as in Section 4.4):

x̄i = Σ2n
j=0w( j)

m x̃( j)
i , P̄i = Σ2n

j=0w( j)
c

(
x̃( j)

i − x̄i

) (
x̃( j)

i − x̄i

)T
+Qi.

7. Transform the sigma-points and calculate the pre-
dicted observation:

ỹ( j)
i = h(x̃( j)

i , ti), ȳi = Σ2n
j=0w( j)

m ỹ( j)
i .

8. Calculate the predicted observation covariance and
results:

Si = Σ2n
j=0w( j)

c

(
ỹ( j)

i − ȳi

) (
ỹ( j)

i − ȳi

)T
+ Ri, νi = yi − ȳi.

9. Compute the Kalman gain and update the estimate of
the state and its covariance:

Vi = Σ2n
j=0w( j)

c

(
x̃( j)

i − x̄i

) (
ỹ( j)

i − ȳi

)T
, Ki = Vi(Si)−1,

x̂i = x̄i + Kiνi, P̂i = P̄i −KiSiKT
i .

10. Return to step 1 and process the next observation.

4.2. Smoothing
In the simulated scenario considered in this work, mea-

surements from the radar come in tracks of 5-20 plots,
with long intervals in-between them (hours). While the
BLS approach is simultaneous in nature, the KF ap-
proaches (EKF/UKF) process the measurements sequen-
tially, in the order they were obtained; thus, the output
of the filter can be improved via a backwards smoother.
This additional algorithm propagates the filter backwards
in time, starting from the last plot in a track, up to the first
one (or even to previous tracks), modifying estimates ac-
cordingly (Goff, 2015). It is well-known that smoothers
provide considerable improvement for orbit determina-
tion.

4.3. UKF measurements
As a first step, the UKF must be tuned to work correctly

in the absence of manoeuvres. The radar measurements
are range, range rate, azimuth and elevation. The radar
accuracy on range is in the order of metres, whereas one
gets errors under a metre per second for range rate, but the
angular error translates into a distance error of kilometres
for a LEO satellite, as typical for a surveillance radar of
this size. Thus, only range and range rate measurements
are considered as the filter’s inputs.

4.4. UKF process noise estimation
The UKF algorithm requires the process noise covari-

ance as an input. This quantifies mismatches with respect
to the real process. Consequently, it is a key factor in the
filter as it will balance the credibility of the process with
respect to the measurements. In any case, the process co-
variance is unknown, as its exact knowledge would imply
perfect modelling, and has to be tuned. Initial covariance
needs also to be estimated to be as realistic as possible
(Poore et al., 2016). In Carpenter and D’Souza (2018),
the state noise compensation technique described next is
recommended as a good practice for navigation filters and
has been adopted.

Denote by LVLH a Local-Vertical, Local-Horizontal
frame. Assuming LVLH velocity error as Gaussian white
noise with covariance

SLVLH =

 qx 0 0
0 qy 0
0 0 qz

 , (4)
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then, the transformation to inertial coordinates can be
made using the rotation matrix RLVLH which transforms
LVLH coordinates to the inertial frame

Sk = RLVLHSLVLHRT
LVLH . (5)

Dividing the elapsed time between radar tracks in in-
crements ∆t, where the inertial orientation of the LVLH
frame is assumed constant, the full state inertial covari-
ance grows during an interval k as a second-order random
walk model:

Mk =

[
Sk∆t3/3 Sk∆t2/2
Sk∆t2/2 Sk∆t

]
, (6)

and then process noise covariance estimation at the
time instant i of the UKF algorithm is

Qi =

{ ∑N
k=1 Mk, for filter calls between tracks,

06×6, for filter calls within a track.

Where N is the number of time increments in-between
filter calls. Within a track and between plots, where mea-
surements are obtained every few seconds, the process
mismatch is negligible.

4.5. UKF preliminary testing results
Numerical results are shown in order to justify the cho-

sen implementation. The considered scenario is the LEO
satellite Sentinel-1A (with initial orbital elements taken
from public TLEs and assumed precise, propagated with
second-order gravity harmonics and drag using OREKIT)
between 16:00:00 08/07/2015 to 16:00:00 12/07/2015.
The radar measurements are simulated with some noise.
The following results assume a model mismatch in drag,
with CD = 2.2, S = 10 m2 the “real” drag coefficient and
exposed surface, and CD = 2, S = 9.5 m2 the assumed
ones. The LVLH acceleration errors for (4) are

qx = 10−9 m2s−3, qy = qz = 5 · 10−10 m2s−3

where more process noise has been assumed in the tan-
gential direction (due to the drag modelling uncertainty
being dominant in LEO). The discretization time period
is taken as ∆t = 10 min. A comparison with a simula-
tion assuming a null process covariance noise is shown in
Figure 1 (red dots indicate the mismatch between mea-
surements and the predicted state after the filter update).

Figure 1: Position error without process noise (top) and estimating pro-
cess noise (bottom). Red dots indicate the UKF error at each plot (mea-
surement points).

It can be seen how the inclusion of some process noise
greatly improves the filter’s convergence.

In the results, the initial covariance is assumed small
and with a realistic shape (obtained from running the filter
for a few days); using a diagonal shape resulted in a much
poorer performance of the filter.
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4.6. Manoeuvre detection

The filter is adapted to estimate the presence of ma-
noeuvres. Thus, in the 8th step of the UKF’s algorithm,
a manoeuvre prediction metric can be included, which
reads:

Ψi =

√
νT

i S−1
i νi, (7)

with νi being the residuals and Si the observation co-
variance, for i ∈ {1, . . . , n}, n being the number of plots
of a given track. This term can be used to estimate model
mismatches (due to manoeuvres), and then trigger other
manoeuvre detection algorithms, every time a radar track
is processed.

For manoeuvre detection, three metrics (7) were pro-
posed; either Ψ1 (with the logic that the first plot may
show the largest impact from a previous manoeuvre),
maxi{Ψi} or

Ψ =
1
n

√√ n∑
i=1

Ψi, (8)

As the detection method is based on finding significant
discrepancies between the predicted orbit and the actual
one, the residuals are computed prior to smoothing. A
proof of concept is shown for the same scenario with a
manoeuvre. The manoeuvre start is 00:34:58 11/07/2015
and ends at 00:35:24 11/07/2015 with a constant accelera-
tion of u =

[
0.31 · 10−2,−0.35 · 10−3, 0.37 · 10−5

]
m/s2 in

the LVLH frame. In Figure 2, the UKF demonstrates its
capability to recover the orbit after the manoeuvre is ap-
plied, even without any particular mechanism for covari-
ance inflation. Moreover, a comparison of the possible
detection metrics is also shown, with Ψ seemingly being
the metric with a better trade-off between detection and
false positives.

5. Reachability-based manoeuvre detection algo-
rithms

In this section, RA as outlined in Section 3 is applied
to the specific problem of manoeuvre detection. Thus, the
starting inputs are the precise orbit of the objects (pre-
manoeuvre) and a radar track (possible, post-manoeuvre),
and the output is the probability of a manoeuvre having
happened.

Figure 2: UKF position error with manoeuvre (top) and detection met-
rics comparison (bottom). The vertical dashed line represents the ma-
noeuvre

As a first step, the theory of attributables (Vananti et al.,
2017; Reihs et al., 2021) is introduced; it allows to “com-
press” several plots into a single, higher-quality measure-
ment, fitting a full track into a single polynomial expres-
sion whose order needs to be determined.

Next, two algorithms are explained; the first is based on
comparing the range and range rate attributables (ρ, ρ̇) ob-
tained from measurements with the one obtained from the
initial uncertain orbit, by means of confidence regions and
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the Mahalanobis distance, which is a measure of the dis-
tance between a point and a distribution (Hall and Singla,
2019).

The second algorithm is based on the use of optimal
control theory. Following the ideas of Singh et al. (2012)
and Holzinger et al. (2012) one can compute by means
of stochastic optimal control a distribution of the ∆V that
connects the uncertain orbit with the measurement. This
distribution can then be used to obtain the likelihood of a
manoeuvre having been performed.

5.1. Attributables
We use attributables to condense the information of all

plots in each track (Reihs et al., 2021). A radar provides
range ρ, range rate ρ̇, elevation El and azimuth Az, that,
coupled with the chosen reference epoch t, form the at-
tributable

A = {t, ρ,El,Az, ρ̇ } . (9)

Fitting the information of the observables indepen-
dently is one option, but it is possible to reduce the un-
certainty of the resulting virtual measurement if one in-
corporates the definition of range-rate into the modelling,
so that it shares the parameters with the range, as follows:

ρ (t) = ρ0 + ρ1t + ρ2
t2

2!
+ · · · + ρn

tn

n!
, (10)

El (t) = El0 + El1t + El2
t2

2!
+ · · · + Eln

tn

n!
, (11)

Az (t) = Az0 + Az1t + Az2
t2

2!
+ · · · + Azn

tn

n!
, (12)

ρ̇ (t) =
dρ (t)

dt
= ρ1 + ρ2

2t
2!

+ · · · + ρn
ntn−1

n!
. (13)

In the expressions above, the origin of time would be at
the middle time of the track.

This method manages to average out noise and reduce
the standard deviation of the virtual measurement. Fol-
lowing the nomenclature in Reihs et al. (2021), the set of
equations that allows to solve the parameters in the sense
of least-squares is:

m =


ρ
El
Az
ρ̇

 = AS YS p + υ =


A 0 0
0 A 0
0 0 A
Aρ̇ 0 0

 p + υ, (14)

where m contains the measurements of all observables in
the track, p collects the parameters ρi, Azi, and Eli that
one wants to calculate, and the matrices A and Aρ̇ have the
coefficients in the formulas (10)–(12) and (13), respec-
tively, evaluated at the times of the corresponding plots.
The error υ is assumed to follow a Gaussian distribution.
Then the problem to solve is posed using weighted least-
squares:

min
p
υT Wυ = min

p
(m− AS YS p)T W(m− AS YS p), (15)

whose solution is well-known:

p = (AT
S YS WAS YS )−1AT

S YS Wm. (16)

The weighting matrix W is chosen to be the inverse of
the covariance matrix of the measurements, Συ, thus the
attributable errors covariance matrix is:

Σp =
(
AT

S YS Σ−1
υ AS YS

)−1
. (17)

This allows to estimate how good a virtual measure-
ment α (t) is expected to be to be at any point of the fit, by
computing

Var [α (t)] =
∑
i, j

σi j
tit j

i! j!
, (18)

where σi j are the coefficients of Σp corresponding to the
sub-matrix of each observable; these are sufficient to pro-
vide the covariance matrix of the complete attributable
(ΣA) at the epoch without further processing.

A test track shown in Figure 3, with realistic radar stan-
dard deviations, has been used as an example of range at-
tributable. The uncertainty is mitigated with a noticeable
reduction of 50% in the standard deviation (in the case of
the range rate, the reduction is of 60%), a consequence of
the methodology used for the definition of the range-rate
attributable.

In addition, one could even try to estimate the azimuth
and elevation rates and use it for Initial Orbit Determina-
tion (IOD), but as one cannot expect to perform well as a
good IOD with such a short observation arc, this method
is not pursed in this work.

5.2. Algorithm 1: Comparison of real and projected at-
tributable through Mahalanobis distance

Applying the nomenclature of Section 5.1, from all the
plots of a track one can obtain the virtual values of range,
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range-rate, azimuth and elevation at the middle of a track
(t0), namelyA = (t0, ρ0,Az0,El0, ρ1), as well as the asso-
ciated uncertainty in the form of a covariance matrix ΣA.

The following algorithm is used to obtain a “projected”
(or predicted) measurement from the initial value of the
reference orbit, which is assumed to follow a certain
known distribution:

1. Sample the PDE of the initial condition obtaining m
sample points. Denote these as x0 j for j = 1, . . . ,m.
The set of initial conditions Ω0 is then approximated
by these points.

2. Propagate the sampled points using an OREKIT
propagator up to time t f . Taylor differential algebra
methods can be used to greatly speed up this com-
putation, at the price of a lengthy initial calculation
(Andrea and Maisonobe, 2016). Thus, one obtains m
trajectories x j (t).

3. Projected values at the attributable time ti are ob-
tained as a cloud of points x j(ti), with the density of
points giving an approximate measure of the proba-
bility associated to the real trajectory.

4. Now for each sampled orbit, one can compute the
radar measurements at t0, obtaining a “cloud” of
measurements, from which one can obtain its mean
(ρ̂0, Âz0, Êl0, ρ̂1) as well as the associated uncertainty

in the form of a covariance matrix Σ̂. This is denoted
as the projected measurement (in the sense that it is
the attributable value one would expect given the dis-
tribution of the initial condition).

5. Finally, the attributables and projected measure-
ments can be compared. If no manoeuvre has been
performed, one would expect that both values should
somewhat agree. To formulate this more precisely,
define:

∆ρ0
∆El0
∆Az0
∆ρ1

 =


ρ0
El0
Az0
ρ1

 −

ρ̂0

Êl0
Âz0
ρ̂1

 ,∆Σ = ΣA + Σ̂. (19)

6. Then, if there is no manoeuvre, one would ex-
pect that, under an assumption of normality,(
∆ρ0,∆Az0,∆El0,∆ρ1

)
should belong to a normal

distribution of zero mean and covariance ∆Σ. This
can be checked either by computing confidence re-
gions or equivalently through the Mahalanobis dis-
tance, as briefly explained next.

5.2.1. Use of confidence regions and Mahalanobis dis-
tance

For a n-dimensional multivariate normal distribution
with mean m and covariance matrix Σ, the p− level confi-
dence ellipsoid (this is, the ellipsoid containing with prob-
ability p samples from the distribution) is given by{

x ∈ Rn : (x − m)T Σ−1 (x − m) ≤ χ2
n (p)

}
, (20)

where χ2
n(p) is the inverse cumulative distribution func-

tion of the Chi-square distribution with n degrees of free-
dom (the dimension of the vector x), evaluated at the prob-
ability value p. Similarly, the Mahalanobis distance is a
measure of the distance of a point x from a distribution. It
is unitless, scale-invariant and takes into account the cor-
relations of the distribution. Concretely, if the distribution
has mean m and covariance matrix Σ the Mahalanobis dis-
tance (MD) of a point x is computed as

MD(x) =

√
(x − m)T Σ−1 (x − m) . (21)

In particular if the distribution is a multivariate normal,
then the MD has a chi-square distribution with n degrees

9
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of freedom; thus, it is equivalent to the use of confidence
ellipsoids. This property can be used to compute probabil-
ities of manoeuvre. Next, an example is shown where the
comparison of real and projected attributables is carried
out for two cases: one example with manoeuvre and one
without. Figure 4 shows that the confidence intervals and
MD are able to discriminate the manoeuvred case from
the non-manoeuvred one, at least for a simple basic sim-
ulation, using range and range-rate.

Based on the MD, a probability measure has been com-
puted based on the MD being distributed as a χ2 distri-
bution function with as many degrees of freedom (n) as
variables, by fixing a threshold of being outside the 50%
ellipsoid. Thus, a number PRMD (which is a possible es-
timation of the probability of manoeuvre) is computed as

follows:

PRMD = max
{
0, 2(χ2 (MD; n) − 0.5

}
. (22)

This way, if the MD has a probability of 50% or less of
occurring, it is assumed that there is no manoeuvre, to
reduce false positives. If the MD has a probability of more
than 50% of happening, then one subtracts 50 from the
probability and multiplies it by two; if one gets, e.g., a
probability of a certain MD of 80%, then PRMD = 60%.

5.3. Algorithm 2: use of optimal control to compute a ∆V
bounded measurement of distance

As a more sophisticated alternative to the Mahalanobis
distance (Singh et al., 2012; Holzinger et al., 2012) one
can compute by means of stochastic optimal control a
distribution of the minimum ∆V that connects the uncer-
tain orbit around it. This distribution can then be used as
a metric to obtain the likelihood of a manoeuvre having
been performed. The optimal control problem is posed as
follows:

J = min
u

∫ t f

t0
uT (t) u (t)dt, (23)

s.t. x′ (t) = f (x (t) , u (t) , t),
x (t0) = x0,

h
(
x
(
t f

))
=

[
ρ ρ̇

]T .

In the above optimal control problem, the initial point
is known from the precise orbit whereas the function h
at the final point represents the function relating posi-
tion and velocity with range and range-rate (the most pre-
cise measurements) which should take the value obtained
with attributables as explained in Section 5.1. The func-
tion f represents the orbital dynamics, including any de-
sired perturbation. The selected functional would repre-
sent the energy of the manoeuvre acceleration, which is
less problematic than its L2 norm from a numerical point
of view. It is well known from the literature that the real
∆V is bounded by the square root of this quantity, see,
e.g., Siminski et al. (2017).

The problem is solved with CasADi (Andersson et al.,
2019), an open-source solver for MATLAB, with a multi-
ple shooting method discretizing the orbital dynamics in
N time intervals; for each of these, since manoeuvres are
small, the orbital dynamics is replaced with a linearized
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model obtained from OREKIT (computing the State Tran-
sition Matrix, or STM), with discrete ∆V’s applied at the
beginning.

As a first step, the problem has been solved in a deter-
ministic way. Since, once the STM is computed, the so-
lution is fast (seconds or less), to incorporate the stochas-
ticity of the problem (both in initial orbit and measure-
ments), a Monte Carlo algorithm has been implemented
as a simple solution, albeit rather time-consuming. Figure
5 shows the obtained cumulative empirical distribution of
J (from 1000 samples) for two cases (with and without
manoeuvre).

In addition, a novel method to discriminate potential
manoeuvres is now described. Qualitatively, it is clear that
the distribution without manoeuvre is “smaller” than the
one with manoeuvre. In the case without manoevre, we
can derive a “mean distribution” as well as a distribution
at a 2-sigma distance from the mean, which is helpful to
avoid false positives. From these distributions some met-
rics have been defined, by using its 10%, 50% and 80%
percentiles.

The metrics are exemplified in Fig. 5. As shown,
take the 80% percentile of the estimated mean non-
manoeuvred distribution, J0.8M , and compare with the
probability p0.8M = Pr (J ≤ J0.8M) of the (potentially
manoeuvred) distribution to be below that energy value,
as graphically shown in Fig. 5. The higher that proba-
bility, the less likely of a manoeuvre to have happened
according to that particular percentile (as there would be
more cases that require the same or less energy than the
non-manoeuvred case to connect the initial orbit and the
measurement). In the figure it can be seen how using
the 2-σ non-manoeuvred distribution (thus usingJ0.8D in-
stead, leading to p0.8D) is more conservative. To use this
idea to establish a probability of manoeuvre from a given
percentile d the following scaling is used:

Pd = max
{

0,
(d − Pr (J ≤ Jd))

d

}
. (24)

For instance, for d = 0.1 and calling p0.1 = Pr (J ≤ J0.1),
if p0.1 is above 10% the probability becomes zero, and if
not, the difference is multiplied by 10, which means that
p0.1 = 0 would indicate total confidence of manoeuvre,
for that metric (as shown in Fig. 5). When using the mean
distribution we will refer to this metric as P1M, with P1D
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Figure 5: Empirical distribution of manoeuvre energyJ computed from
the stochastic optimal control problem (1000 samples). The dark blue
line represents the mean CDF of the non-manoeuvred case, and the light
blue is the mean plus 2-sigma distribution, whereas the red plot repre-
sents a manoeuvred cases.

reserved for the 2-sigma metric. Other metrics we use
employ the 50% and 80% percentiles and are denoted as
P5M, P5D, P8M and P8D.

6. Results for simulated scenarios

An OREKIT-based simulator, both for the manoeuvres
and for the radar observations, has been developed. They
provide realistic (though not accurate) testing examples.
They are very useful to tune and validate the different al-
gorithms and filters. Starting points are generated from
public TLEs which are used to define reference orbits
with propagators including J2 and aerodynamic drag, as
explained in Section 4.5.

The algorithms, besides the model mismatches ex-
plained in that section, start from initial conditions within
the expected limits of error of the real precise orbits
(meters). Two main scenarios, respectively based on
the satellites Sentinel-1A and Swarm-C, are considered.
A manoeuvre either tangential (T), out-of-plane (OOP)
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or hybrid (with components both tangential and out of
plane) is simulated, maintaining a constant acceleration
of 10−3 m/s2 and characterized by the following fields:

1. Manoeuvre intensity (regulated through the dura-
tion): low (5 seg→ 5 · 10−3 m/s) / medium (30 seg
→ 3 · 10−2 m/s) / high (120 seg→ 1.2 · 10−1 m/s).

2. Manoeuvre location with respect to a radar track: 2
h, 6 h or 12 h before radar.

3. The Sentinel-1A scenario spans from 00:00:00
18/08/2020 to 00:00:00 22/08/2020. The manoeuvre
starts at 18:25:00 20/08/2020.

4. The Swarm C scenario spans from 00:00:00
14/07/2020 to 00:00:00 20/07/2020. The manoeuvre
starts at 12:30:00 17/07/2020.

Thus, combining all these factors, one gets 18 simu-
lation scenarios per satellite to analyse the influence of
these factors for the algorithms. Due to space limitations,
only selected results are shown, with general conclusions
drawn from the complete set.

6.1. UKF simulated results

The result without manoeuvre for Sentinel-1A is pre-
sented in Figure 6, whereas the manoeuvred case (tangen-
tial) is shown in Figure 7. The value of Ψ, which should
help in detecting manoeuvres, is given for some Sentinel-
1A cases in Table 1.

Case/Ψ Pre − man.Max. Post − man.Max.
No manoeuvre 4.435 2.341*
low − 2h 4.435 2.386*
low − 6h 4.435 2.411*
low − 12h 4.435 2.335*
medium− 2h 4.435 3.478*
medium− 6h 4.435 10.33*
medium− 12h 4.435 6.260
high − 2h 4.435 34.39*
high − 6h 4.435 132.0*
high − 12h 4.435 75.89

Table 1: Maximum value of filter detection metric before and after
Sentinel-1A tangential manoeuvre, simulated results. The asterisk indi-
cates that the maximum arises after the first post-manoeuvre track (i.e.,
at a later track)

Figure 6: Position error for Sentinel-1A with respect to reference orbit
without manoeuvre. Red dots indicate the mismatch between measure-
ments and the predicted state after the filter update.

It can be observed e.g. in Fig. 6 that the filter takes
some time to stabilize. This is probably due to the incor-
rect initial covariance. Since in real scenarios the covari-
ance will not be perfectly known this can be expected. On
the other hand, it is clear that the filter is working cor-
rectly in all cases; since the measurements are scarce it is
unavoidable that the position errors grow, however, they
are clearly mitigated at each measurement. It can be seen
in Fig. 7 that manoeuvres induce large errors after they
happen, since they are unaccounted for in the process co-
variance. The largest the manoeuvre the larger the error
and the more it takes to recover from it. From Table 1,
one can observe that the value of Ψ is indicative of the
presence of a manoeuvre only in medium and specially in
high-intensity cases. Low-intensity manoeuvres are indis-
tinguishable from process noise. In addition, the distance
to the radar measurement does not seem to have much in-
fluence in the value of Ψ

In the Swarm C case (not shown), the value of Ψ was
indicative of the presence of a manoeuvre only in high-
intensity cases. For low- and medium-intensity manoeu-
vres, they were, in principle, indistinguishable from pro-
cess noise, unless the manoeuvre happened at a long
enough distance from the first radar measurement. The

12



Figure 7: Position error with respect to reference orbit for Sentinel-1A manoeuvred scenarios. Red dots indicate the mismatch between measure-
ments and the predicted state after the filter update.
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main cause of this was, besides the long gap without mea-
surement, having less radar measurements; in the case of
Sentinel-1A, nine values were obtained at the pass after
the manoeuvre, whereas in the case of Swarm-C, only five
values are obtained.

6.2. Algorithm 1 simulated results
In Table 2, the Mahalanobis distance (MD) has been

computed considering only range-range rate (column 2),
El-Az (column 4) and all four measurements (column 6).
As seen in the table, in general, using only range and
range-rate is more sensitive in more cases; using eleva-
tion and azimuth can induce false positives. All high-
and medium-intensity manoeuvres are detected, but low-
intensity manoeuvres are usually not detected. In addi-
tion, the distance to the radar track does not seem to affect
these results.

The results can be inspected visually in Figure 8. Note
that due to the propagation “stretching” the orbit uncer-
tainty in the range-range rate plane, it is hard to verify if
measurements belong to the confidence region, except in
high-intensity cases. In the Swarm C case (not shown),
only high-intensity manoeuvres are detected, with vary-
ing success for medium-intensity manoeuvres.

6.3. Algorithm 2 simulated results
The results are presented in Table 3. The metrics com-

puted from Algorithm 2 detect all high- and (except P8M
and P8D) medium-intensity manoeuvres. P1M is the most
sensitive algorithm being able to detect even some low-
intensity manoeuvres. However, it has a non-negligible
rate of false positives (a false positive is defined as a non-
manoeuvred case from the Monte Carlo simulation being
detected with p ≥ 50%). P1D is only slightly less sen-
sitive and reduces the number of false positives. Other
metrics seen to perform worse than P1M and P1D. In
the Swarm-C case (not shown), only high-intensity ma-
noeuvres are detected, with varying success for medium-
intensity ones. As in Section 6.1, main causes are long
gaps without measurement and having less radar measure-
ments right after the manoeuvre.

7. Results for real scenarios

Given the algorithms already presented and validated
through simulated scenarios on previous sections, this

section presents the results obtained when they were
tested on real-world data, for satellites of the Sentinel and
Swarm family, and also for TerraSAR-X and TanDEM-
X satellites. The data used and the sources were, for
the satellites’ orbits, OEM data, this is, accurate posi-
tion and velocity information of the satellites under study
(with precisions one order of magnitude better than the
radar data, i.e., with position error of about 1 meter), pro-
vided by ESA/ESOC and DLR/GSOC. For radar data,
real tracks from the Spanish survey radar S3TSR were
used, with the necessary uncertainty information for the
algorithms. Finally, for testing purposes, manoeuvre
data, providing accelerations in a local reference frame
as well as the duration, were provided by ESA/ESOC and
DLR/GSOC.

First, the selected scenarios are presented and briefly
described in Section 7.1. In Section 7.2 the particulari-
ties of the dynamical modelling are detailed, followed by
a brief comment on the data consistency check (Section
7.3). The last subsections (7.4)–(7.5) contain the numeri-
cal results of UKF and reachability analysis using the real
data.

7.1. Real testing scenarios
The list of scenarios is in Table 4 with the correspond-

ing epochs. The satellites used to create these scenarios
are: Sentinel-1A, Sentinel-1B, Sentinel-2A, Sentinel-2B,
Swarm-C, TanDEM-X and TerraSAR-X, but the relation
between satellite and scenario has been omitted here. Sce-
narios are divided in a number of segments, which start
and end at consecutive radar tracks. For the purposes of
testing the RA algorithms, these segments are considered
and processed individually (using the precise orbits to de-
termine the starting point for each segment), whereas the
filter runs for a full scenario, processing each segment
consecutively.

A Gantt-like representation was produced to exemplify
how the scenarios are generally distributed, see Figure
9 for Scenario 1, with the radar observation (red) and
manoeuvres (blue). For completeness, the plots include
the simulated radar observation (black circles), which in
some cases reveal missing radar tracks from the real data.

The simulations studied in Section 6 were carried out
for a single type manoeuvres only, namely a uniform ac-
celeration in a single time segment, either IP, OOP or hy-
brid. However, real operation of satellites show that orbit
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Figure 8: Reachability results (Algorithm 1) for Sentinel-1A manoeuvre, Range vs Range-rate.

Case / Metrics MD (ρ, ρ̇) PRMD (%) MD (El,Az) PRMD (%) MD (All) PRMD (%)

WoM 0.29 0 2.18 33 2.60 0
L − 12h 1.54 8 1.66 13 2.22 0
L − 6h 1.16 0 1.52 7 1.96 0
L − 2h 1.35 0 2.10 30 2.16 0
M − 12h 3.17 59 2.15 32 3.97 18
M − 6h 4.66 81 0.97 0 4.81 39
M − 2h 4.32 77 2.29 36 4.80 38
H − 12h 23.48 100 3.61 67 23.53 100
H − 6h 30.37 100 4.44 78 30.38 100
H − 2h 12.27 100 1.23 0 12.44 97

Table 2: Sentinel-1A reachability analysis with Algorithm 1 and probability from MD. WoM=without manoeuvre, L=low, M=medium, H=high.
Tangential case

15



Case / Metrics P1M (%) P5M (%) P8M (%) P1D (%) P5D (%) P8D (%)

FP 10 1 0 3 0 0
L − 12h 100 72 0 70 40 0
L − 6h 100 42 0 50 0 0
L − 2h 0 0 0 0 0 0
M − 12h 100 96 0 100 84 0
M − 6h 100 100 95 100 100 95
M − 2h 100 98 0 100 96 0
H − 12h 100 100 100 100 100 100
H − 6h 100 100 100 100 100 100
H − 2h 100 100 100 100 100 100

Table 3: Sentinel-1A reachability analysis with Algorithm 2 and probability from optimal control distance metrics. FP=false positives, L=low,
M=medium, H=high. Tangential case

Aug 06 Aug 09 Aug 14 Aug 17
2019   

Gantt chart for scenario 1

Radar observation
Simulated radar
Manoeuvre

Figure 9: Gantt chart for one real scenario. This is representative of the frequency of radar tracks for the orbits under study.

corrections are generally a combination of more than one
type, in consecutive and close time segments (usually low
impulse IP and medium impulse OOP). These consecu-
tive manoeuvres may have a bigger impact on the orbit by
increasing its detectability.

7.2. Dynamical modelling

Since real orbits are subject to multiple complex per-
turbations, an important initial step is to determine the
dynamical model for each satellite. In order to use the
dataset provided for the real testing scenarios several im-
provements had to be made to the modelling of the dy-
namics with respect to the one used in Section 6. The
most important ones are the changes of the Earth grav-
ity and atmosphere models. For one, the degree and or-
der of the harmonics for the earth gravity field has been
considerably increased. Testing has been done to discern

the relation between the computational costs of increasing
this parameter against the changes in the simulation error
(measured with respect OEM data).

Given the uncertainty of the data, values of the har-
monic’s degree/order above 40 have a negligible effect
and can be discarded, as it would significantly slow down
the computation without any relevant benefit. To justify
this, a comparison has been made with increasing de-
gree/order of the harmonics, see Figure 10 for a represen-
tation of the position error evolution (against OEM data
points) along a 24-hour simulation for Sentinel-1A. The
time required to simulate is in the legend, where up to de-
gree/order 40 it is affected very little when considering the
great reduction in prediction error. Going above this value
has a measurable effect in the time required, but with al-
most no impact on the error (there is even some small
random increase possibly due to other perturbations and
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Scenario
Epoch of most
intense man. Initial epoch Final epoch # of segments

1 14-Aug-2019 23:11:03 06-Aug-2019 06:52:43 16-Aug-2019 18:09:54 12
2 29-Jan-2020 23:11:08 23-Jan-2020 06:36:14 31-Jan-2020 07:09:05 8
3 21-May-2020 01:06:08 17-May-2020 06:27:59 25-May-2020 18:01:43 10
4 19-Aug-2020 22:29:28 19-Aug-2020 17:45:21 27-Aug-2020 18:18:18 9
5 14-Aug-2019 23:59:53 05-Aug-2019 07:00:17 17-Aug-2019 07:00:15 13
6 19-Sep-2019 00:57:21 10-Sep-2019 18:00:59 22-Sep-2019 07:00:19 12
7 20-May-2020 22:37:36 12-May-2020 18:09:12 28-May-2020 17:36:30 17
8 17-Jun-2020 22:05:17 09-Jun-2020 17:36:29 24-Jun-2020 18:00:59 18
9 05-Feb-2020 16:09:00 03-Feb-2020 22:25:25 13-Feb-2020 22:25:22 8
10 10-Sep-2020 17:10:27 03-Sep-2020 11:22:01 10-Sep-2020 22:25:35 6
11 18-Sep-2019 16:59:55 11-Sep-2019 11:01:44 21-Sep-2019 22:25:30 5
12 17-Sep-2020 16:10:04 08-Sep-2020 11:22:02 19-Sep-2020 10:51:42 9
13 15-Jul-2020 17:02:15 06-Jul-2020 01:47:22 20-Jul-2020 00:05:35 12
14 22-Aug-2020 00:24:06 17-Aug-2020 17:49:25 24-Aug-2020 06:48:33 4
15 22-Aug-2020 00:24:07 16-Aug-2020 18:06:50 22-Aug-2020 17:58:07 4

Table 4: List of real testing scenarios. A segment is defined as the elapsed time between a radar track and the next.

misfits). This result supports the decision to keep the har-
monics only up to degree/order 40. Just to make sure that
these results hold for lower orbits, a similar test has been
done for a 1-day simulation interval with the OEM data
of Swarm-C, which despite not being shown here points
to the same conclusions.

7.2.1. Atmosphere model and other orbital perturbations
The atmosphere model has been changed from a Mod-

ified Harris Priester model (static atmosphere) on the
simulated scenarios to the 2001 Naval Research Labo-
ratory Mass Spectrometer and Incoherent Scatter Radar
Exosphere of the MSIS model (Picone et al., 2002), or
NRLMSISE-00 model (also used by ESA for predic-
tion and orbit determination). This last model is em-
pirical and needs real weather data to compute the neu-
tral atmosphere from the surface to the lower exosphere.
The model feeds from the MSAFE (Marshal Solar Activ-
ity Future Estimation) data implemented inside OREKIT,
which provides the mean and daily solar flux and geomag-
netic indices. From the carried out testing (results omit-
ted here for brevity), the MSAFE atmosphere provides a
much better error estimation (against OEM data), but is
considerably more expensive to compute, as it requires to

perform interpolations from the empirical data to compute
density values. These tests show us that, once the Earth
shape has been modelled accurately (degree/order of 40),
the gain from a more advanced atmosphere model is also
very significant, even close to one order of magnitude.
Although it is not shown here, another comparison has
been made to measure the relative importance of the so-
lar radiation pressure in simulations of these periods (the
order of days) when the other forces are modelled with
as much precision as possible, to conclude that this per-
turbation’s relative significance is minimal (the effect is
masked by other modelling errors for the length of these
simulations).

7.2.2. Satellite parameters
The last consideration has been the model of the satel-

lite itself, which is defined by the drag coefficient (CD),
the frontal area for the drag force (S ) and the area af-
fected by the solar radiation pressure (S S RP). The mass
of the satellite is considered different for each case and
has been chosen to be the mean value between the wet
and dry mass of each satellite. Simple as the model is,
the 3 parameters are adjusted to get a good fit with the
real data provided. In order to do this, an iterative opti-

17



Jan 26, 18:00 Jan 27, 00:00 Jan 27, 06:00 Jan 27, 12:00 Jan 27, 18:00
2020   

0

500

1000

1500

Po
si

tio
n 

er
ro

r 
[m

]

Position error - Earth harmonics [Degree,Order] and sim. time [s]

[5,5]      56.8 s
[10,10]  55.2 s
[20,20]  56.5 s
[40,40]  59.9 s
[60,60]  65.9 s
[90,90]  80.3 s

Figure 10: Position error (m) for Sentinel-1A in a 24-hour segment,
comparing the effect of increasing the Earth harmonics.

mization process has been performed, with enough itera-
tions so that the changes at the end are sufficiently small
to consider that it has reached a minimum (normally at
around 4-5 iterations). The algorithm is quite expensive
computationally speaking, as for each of the optimization
steps the orbit must be simulated several times for it to
find a solution. This method has another drawback, and it
is that depending on the chosen segment the final values
may vary slightly. Although marginal, this effect can be
palliated if the final values are averaged between different
segments.

7.3. Data consistency check
Several sanity checks were performed to ensure the

consistency of the different data sources and with the
propagators, namely, verifying: that the precise orbit
replicate, approximately, the radar measurements (to mea-
surement and orbit error); that the propagators do not have
much error with respect to the precise orbits and the mea-
surement in the absence of manoeuvres; that the manoeu-

vre file was consistent with the OEMs, which can be veri-
fied by the error of the propagators growing rapidly in the
presence of manoeuvres.

These checks are essential to ensure that false positives
or false negatives are not in fact detecting inconsistencies
in the data sets, and although very extensive, only general
results will be mentioned here.

The first check (consistency between OEM files and
radar data) shows that the range differences are in the or-
der of the combined error of the radar measurements and
the OEMs themselves. The second check, consistency be-
tween our propagator and the OEM data, shows that in
general the propagation performs well (errors about 60
meters maximum for a 24-hour period of propagation, as
found when adjusting the values of the dynamics model),
but as expected in the presence of manoeuvres errors grow
rapidly, so that the last check is confirmed as well (see
Figure 11 for an example).

7.4. UKF real results
This section tests the developed UKF against real radar

data of manoeuvring satellites. The filter was improved,
including also the ballistic coefficient in the estimation.
In addition, since the metric Ψ has a close relation to the
Mahalonobis distance, the formula (22) was directly used
to derive a manoeuvre probability.

The smoothed prediction errors with respect to OEMs,
the smoothed range residuals as well as the manoeuvre
detection probability derived from Ψ are shown for one
scenario of Sentinel-1A in Figure 12. The filter error in-
creases slightly at the beginning and then the filter con-
verges; later, after the manoeuvre, errors start to increase
considerably. In any case, the steep increment in the resid-
uals allows the detection of this manoeuvre by the filter
metric.

Space restrictions do not allow for a more comprehen-
sive revision of the results, but the following conclusions
were derived. The estimation of the ballistic coefficient
does not vary much and does not seem to have signifi-
cant impact. It was observed that the filter was, in gen-
eral, well-behaved even in the presence of manoeuvres.
When there are no manoeuvres, it tends to converge, al-
beit sometimes slowly, to errors of the order of just a few
hundred meters compatible with the errors of the propa-
gator (for long propagations). However, there were some
instances of rapid increase of errors due to the presence of
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Figure 11: Examples of how manoeuvres make prediction errors (with
respect to OEMs) grow large.

manoeuvres. The manoeuvre detection metric Ψ∗ allowed
for the computation of a probability but was not very sen-
sitive. Occasionally it detected a manoeuvre after one or
two radar tracks have passed. The need of a combined
manoeuvre detection tool integrated in the filter became
clear: then, the filter can react to a manoeuvre by increas-
ing the process noise (covariance inflation) and thus take
into account the presence of the unknown manoeuvre. In
addition, it would allow for longer smoothings reducing
the risk of using a segment with a manoeuvre for a long
smoothing. This filter is shown in Section 8.

Figure 12: UKF results for one scenario of Sentinel-1A
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7.5. Algorithm 1 real results

For each segment of the real scenarios, Algorithm 1 of
Section 5.1 was implemented. Initialization of the pre-
dicted orbit is done using the precise orbit information
at the closest OEM point right after a radar track, and
it is stopped at the attributable epoch of the next track
(the middle of it). Each of these simulations are done
using Taylor differential algebra and an assumed covari-
ance matrix for the initialization information, so that the
uncertainty of the prediction is known. This, combined
with the confidence of the radar attributable can be used
to compute a cloud of points and from that, the PRMD met-
ric defined in (22); here MD is calculated from range and
range-rate only.

The results are summarized and analysed, with each
satellite being grouped in Table 5. The results of group
1-4, are quite positive, as there is only one false nega-
tive and no false positives, out of 33 cases. Thus, out of
6 manoeuvres, 5 were detected and with high probabil-
ity in general. This is a rather satisfactory result, as the
only manoeuvre that was not detected is also the small-
est. Group 5-8 cases contain 5 manoeuvres, but only 1
is detected (another one results in a non-zero probability
but with low confidence). There are also 3 false negatives,
from 55 total cases. Group 9-10 results are not very reas-
suring as no manoeuvres are detected; and with one false
positive (from 22 cases). The 2 manoeuvres present in the
11-12 scenario are detected, with no false negatives (from
13 cases). Group 13 presents no detected manoeuvres (out
of one) but no false negatives. For group 14-15 (which is
a high-manoeuvring case) only 25% of manoeuvres are
detected.

In global, the results are in need of improvement, as
only about 40% of manoeuvres are detected, even with
some of them being rather intense. The rate of false pos-
itives is quite good on the other hand. Analysing the re-
sults, the causes of errors were as follows; from a total of 5
false positives, all except one present less than 10 plots in
the track following the manoeuvre. Thus, the main cause
of false positives is tracks with fewer plots. From a to-
tal of 14 false negatives, all except one were segments
of length equal to or larger than one day. Thus, the main
cause of false negatives is longer propagations accumulat-
ing additional propagation error. Sometimes these longer
propagation periods are due to missed radar observations

Scenario # man.
% man.
detected

% false
positives

% false
negatives

1 2 100 0 0
2 1 100 0 0
3 1 100 0 0
4 2 50 0 50
1-4 6 83.3 0 16.7
5 2 50 0 50
6 1 0 0 100
7 1 0 6.25 100
8 1 0 11.76 100
5-8 5 20 5.45 80
9 1 0 9.09 100
10 1 0 0 100
9-10 2 0 4.55 100
11 1 100 0 0
12 1 100 0 0
11-12 2 100 0 0
13 1 0 0 100
14 4 25 N/A 75
15 4 25 N/A 75
14-15 8 25 N/A 75
All 16 41.66 2.98 58.34

Table 5: Algorithm 1 summarized results.

right after the manoeuvre. The most challenging scenar-
ios were those with TanDEM-X/TerraSAR-X due to the
abundance of manoeuvres and the scarcity of data. This
algorithm performed poorly in those scenarios compared
with the others.

7.6. Algorithm 2 real results

The summarized results can be seen in Table 6 (results
have to consider there are 134 segments without manoeu-
vres).

The results of group 1-4 are quite positive for both P1M
and P1D, as there is only one false negative and few false
positives, out of 33 cases. Thus, out of 6 manoeuvres,
5 were detected. Only the smallest manoeuvre was not
detected (similarly to the Algorithm 1 results). Group
5-8 cases contain 5 manoeuvres, but only 1 is detected
for both P1M and P1D (another one is felt but with low
confidence). There are also some false positives, from
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Scenario # man.

P1M %
man.

detected

P1M %
false

positives

P1M %
false

negatives

P1D %
man.

detected

P1D %
false

positives

P1D %
false

negatives

1 2 100 0 0 100 0 0
2 1 100 14.29 0 100 14.29 0
3 1 100 0 0 100 0 0
4 2 50 0 50 50 0 50
1-4 6 83.3 3.03 16.7 83.3 3.03 16.7
5 2 50 0 50 50 27.3 50
6 1 0 0 100 0 9.1 100
7 1 0 12.50 100 0 12.50 100
8 1 0 11.76 100 0 11.76 100
5-8 5 20 7.27 80 20 5.45 80
9 1 0 20 100 0 20 100
10 1 0 25 100 0 25 100
9-10 2 0 22.73 100 0 22.73 100
11 1 100 0 0 100 0 0
12 1 0 10 100 0 10 100
11-12 2 50 7.69 50 50 7.69 50
13 1 0 0 100 0 0 100
14 4 50 N/A 50 25 N/A 75
15 4 100 N/A 0 100 N/A 0
14-15 8 75 N/A 25 62.5 N/A 37.5
All 24 54.16 45.84 8.21 50 7.46 50

Table 6: Algorithm 2 summarized results.
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55 total cases, with P1M obtaining a slightly higher rate
of false positives. Group 9-10 results are quite bad for
both metrics as no manoeuvres are detected; and with a
rather high rate of false positive (from 22 cases). One
of the 2 manoeuvres present in group 11-12 scenarios is
detected, with some false negatives (from 13 cases). Re-
sults are the same for both metrics. Group 13 presents
no detected manoeuvres (out of one) but no false nega-
tives, for both metrics. Finally, group 14-15 gives 8 seg-
ments, all of them with manoeuvres; out of these, 5 are
detected for P1D and 6 for P1M. In global, the results
can be considered positive, as more than half the manoeu-
vres are detected with a low rate of false negatives for
both metrics, but in need of improvement. P1M seemed
to perform better than P1D, with a minimal increase in
false negatives. Analysing the results, the causes of er-
rors are similar as for Algorithm 1: From a total of 11
(10) false positives for P1M (resp., P1D), all except two
(resp., one) present less than 10 plots in the track follow-
ing the manoeuvre. Thus, the main cause of false positives
is tracks with fewer plots. From a total of 11 (12) false
negatives for P1M (resp. P1D), all except one were seg-
ments of length equal to or larger than one day. Thus, the
main cause of false negatives is longer propagations accu-
mulating additional propagation error. Sometimes these
longer propagation periods are due to missed radar obser-
vations right after the manoeuvre. The most challenging
scenarios are those with TanDEM-X/TerraSAR-X due to
the abundance of manoeuvres and the scarcity of data. As
opposed to Algorithm 1, this algorithm performs excel-
lently in those scenarios compared with the other.

8. A manoeuvre detection filter using reachability
analysis

The results of the previous section shed light on the
need of a combined manoeuvre detection tool-filter, that
is able both to predict an orbit and detect and take into
account manoeuvres. This section presents our work on
such a filter, which we call the Manoeuvre Detection Fil-
ter (MDF). The idea is to follow the scheme of the UKF of
7.4, combined with the Algorithm 1 of 7.5, to detect ma-
noeuvres. Once a manoeuvre is detected, the idea of co-
variance inflation is followed; thus, the state covariance is
increased up to the point where a manoeuvre is no longer
detected, which would imply that the uncertainty of the

state is able to include the possibility of such a manoeuvre
having been performed. The reasons to choose Algorithm
1 instead of 2 are that it performs better for scenarios 1
to 13, which are the ones best suited to the filter. It is
hopeless to expect the filter to perform well in scenarios
with too many manoeuvres and few radar tracks. In ad-
dition, Algorithm 1 fits quite well with the philosophy of
the filter: the unscented transform can be used to estimate
the state covariance by using the attributable as a “virtual
measurement” used only for purposes of manoeuvre de-
tection, but not for updating the state. This considerably
reduces the computational burden. Also Algorithm 1 gave
less false positives in the real testing.

To be more precise, using the UKF notation of Sec-
tion 4.1 and skipping the unchanged steps, the MDF algo-
rithm is:

1. Start from the previous estimate of the state and the
covariance of its error (x̂0 and P̂0 at first).

2. Compute the attributable time tAi , the values of the
next track yAi and its covariance ΣAi .

3. Compute the sigma-points of the unscented trans-
form.

4. Propagate all the sigma points using numerical inte-
gration until the attributable time x̃( j)

i .
5. Compute the weighted mean and the covariance ma-

trix of the transformed sigma-points: x̄i and P̄i.
6. Compute the probability of manoeuvre pi by trans-

forming the sigma-points (using the observation
equation) to get the predicted observation ŷi, the
residuals νi = yAi − ŷi, and the observation covariance
Si to compute the MDi and the associated probability
pi (using Equation 22):

Si = Σ2n
j=0w( j)

c

(
ỹ( j)

i − ŷi

) (
ỹ( j)

i − ŷi

)T
+ ΣAi

MDi =

√
νT

i S−1
i νi.

7. If pi ≥ 0, 5, multiply the covariance of the predicted
state P̄i by 2 and return to Point 6; otherwise, con-
tinue.

8. Transform the sigma-points (using the observation
equation) and calculate the predicted observation,
the residuals, and the observation covariance.

9. Calculate the predicted observation covariance and
the residuals.
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10. Compute the Kalman gain and update the state esti-
mate.

11. Return to step 1 and continue propagating.

In addition, a “long smoothing” is implemented: if no
manoeuvre is detected, a smoothing is performed back-
wards until the previous radar track, and again forwards.

Figure 13 has one example of the MDF results. In
this case, the filter performs initially quite well thanks
to the long smoothing, and the manoeuvre is detected.
Even though the initial spike after the manoeuvre is quite
large, the filter recovers quite quickly thanks to the infla-
tion mechanism; comparing with the UKF of Figure 12
the behaviour is much improved. However, a false pos-
itive also happens before the end, but it does not impact
the filter’s performance. Note that the UKF metric did not
detect manoeuvres in this segment.

The following conclusions can be derived from the re-
sults obtained from the MDF, which cannot be shown here
due to lack of space. It can be observed that the filter is, in
general, well-behaved even in the presence of manoeuvres
and detects many of them. When there are no manoeu-
vres, it tends to converge, quicker than the UKF without
long smoothing, to errors of the order of just a few hun-
dred meters compatible with the errors of the propagator.
As in the UKF, there are some instances of rapid increase
of errors due to the presence of manoeuvres, particularly
when undetected. The MD metric allows for detection of
many manoeuvres but also produces a considerable num-
ber of false positives. It is not as straightforward as for the
RA algorithms to obtain fair statistics, since it is unclear
if a detection after one or two tracks should be consid-
ered a true or false positive; this is due to the sequential
nature of this algorithm, which considers scenarios as a
whole, instead of processing segments separately. Thus,
the history of each scenario influences the results in sev-
eral ways. Covariance inflation works well in most cases
but in some instances, it might be too large, inducing large
errors in the state.

9. Conclusions and future work

Several methods for the detection of manoeuvres in
LEO from radar data have been presented, based on UKF,
attributable theory and reachability analysis. Initial simu-
lation results showed that the filter did not detect manoeu-

vres unless they are rather intense, whereas the reacha-
bility approach was more sensitive at the price of longer
computation times. When tested with real data, the re-
sults, while not bad, are in need of improvement. Since
the quality of the data was verified, the main identified
difficulty was the scarcity of measurements (low number
of tracks resulting in long propagation times without in-
formation and/or low number of plots in some cases), due
to the fact of having a single surveillance radar, the Span-
ish survey radar S3TSR, as the source of data. Sometimes,
more than 24 hours or more went without a measurement
and the manoeuvres were not very intense. Future ideas to
address this challenge include improvements in the prop-
agator, in the description of uncertainty (e.g. the use of
Gaussian mixtures to better describe the error distribu-
tion after long propagations), and the use of the intensive
surveillance mode of the radar, which can provide hun-
dreds of plots for a single track.

From an innovation point of view, the results can be
considered of interest, since most of the results in the lit-
erature depend on having numerous measurements (often-
times, almost continuous data is assumed, which is only
realistic in GEO with optical sensors), which was not the
case here. The final aim is to have these algorithms inte-
grated in the S3T Cataloguing System in order to provide
routine automatic manoeuvre detection capabilities, but
all methods presented here can be refined and extended
in many directions. Beyond obvious extensions or re-
finement of the algorithms, there is much to be gained
from additional measurements (additional stations, more
regular radar tracks, SLR measurements, etc.) as it was
shown that RA algorithms under-perform when the num-
ber of radar plots are lower. It would be of great interest
to draw a set of minimum measurement requirements for
the successful application of the manoeuvre detection al-
gorithms.
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Figure 13: MDF results for one scenario of Sentinel-1A.
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