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Abstract: This work presents a trajectory planning algorithm for spacecraft rendezvous with
a passive target. The main assumption is that the chaser vehicle has a single thruster and
an attitude control system (e.g. reaction wheels) providing the necessary torque to change its
orientation, which may be the situation for small spacecraft or in the case of thruster failure.
The goal is to design fuel-optimal manoeuvres while satisfying operational constraints. This
time-continuous optimal control problem is addressed using the translational state transition
matrix and the attitude flatness property to transform the dynamics into algebraic relations.
Then, the problem is transformed to a non-linear programming problem which has to be solved.
Simulation results are showed and discussed.
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1. INTRODUCTION

Autonomous spacecraft rendezvous and docking is becom-
ing a more important concern in the space industry as
access to space continues increasing, see Woffinden and
Geller (2007) for an historical review or Fehse (2003) for
the basics. Nowadays, an increasing interest to demon-
strate autonomous rendezvous and flight formation opera-
tions for lightweight and low-power spacecraft is arising
with CPOD, PRISMA and PROBA-3 missions as ex-
amples, see Bowen et al. (2015); Persson et al. (2006);
Castellani et al. (2013).

Typically, the rendezvous problem has been widely stud-
ied just considering orbit control making the assumption
that translational and rotational motion are decoupled.
Direct transcription methods which transform the optimal
control problem into a discrete optimization problem have
been used in many works as Gavilan et al. (2012); Vazquez
et al. (2017) among others. However, orbit and attitude
control subsystems are mutually coupled, which is mainly
due to the dependence of the thrusters orientation with the
relative attitude between target and pursuer (at least in
the short-term). Strategies based on feedback considering a
single-thruster and three reaction wheels as in Oland et al.
(2013) and a six thrusters cuboid layout as in Zhang and
Duan (2012) have been the most employed approaches.
Concerning optimal control, Moon et al. (2016) obtained
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a suboptimal solution for a single-thruster configuration
solving the translational problem with an indirect method
and using a quaternion-feedback controller to obtain the
commanded thruster orientations.

Since the problem is governed by the thrusters orientation,
an overview of the existing attitude planning methods
for spin-to-spin manoeuvres is required. Model Predictive
Control (MPC) techniques based on linearization around a
set point have been used in the works of Øyvind Hegrenæs
et al. (2005); Guiggiani et al. (2015). An interesting
approach is the one followed by Louembet et al. (2009);
Caubet and Biggs (2015) based on the attitude dynamics
flatness property (see Fliess et al. (1995) for more details
about flatness theory). This property allowed them to
parameterize the state and then directly obtain a closed
form expression of the torque via inverse dynamics to pose
a non-linear programming (NLP) problem.

In this paper, a single-thruster spacecraft equipped with
an attitude control system (ACS) is considered. The pro-
posed methodology consists in solving the optimal control
problem as an equivalent static program using the formal
state transition for the relative translation motion and the
flatness property of the attitude motion.

The structure of this paper is as follows. Section 2 de-
scribes the coupled translational and rotational model
for spacecraft rendezvous. Next, Section 3 presents the
time-continuous rendezvous problem with its constraints
and objective function. Section 4 describes the techniques
employed to solve the optimal control problem. Section 5



shows results for cases of interest. Finally, Section 6 closes
this paper with some additional considerations.

2. 6-DOF MODEL OF SPACECRAFT RENDEZVOUS

In this section, a six-degrees of freedom model for space-
craft rendezvous is presented. Firstly, the translational rel-
ative motion between the vehicles is derived; secondly, the
model for the rotational motion of the chaser is described;
and finally, the coupling between both motions is obtained.

2.1 Translational motion

The linear Hill-Clohessy-Wiltshire (HCW) equations (see
Clohessy and Wiltshire (1960)) assume that the tar-
get vehicle is moving along a circular orbit of radius
R. Thus the angular speed of the target is n=

√
µ/R3

where µ is the gravitation parameter of the Earth,
µ=398600.4 km3/s2. Considering a local-vertical/local-
horizontal (LVLH) frame of reference fixed on the center
of gravity of the target vehicle where x refers to the in-
track position, y to the cross-track position and z to the
radial position (positive pointing towards the centre of the
Earth), the HCW equations are

ẍ= 2nż, (1)

ÿ =−n2y, (2)

z̈ = 3n2z − 2nẋ. (3)

Modelling propulsion as impulses

u(t) =

Np∑
k=1

ukδ(t− tk), (4)

and solving (1)-(3) leads to an exact propagation by means
of the state transition matrix

x(t) = A(t, t0)x(t0) + Bu(t), (5)

being x(t)=[x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T and u(t) =
[ux(t), uy(t), uz(t)]T . The A and B matrices are given by

A =



1 0 6(nT − S)
4S

n
− 3T 0

2(1− C)

n

0 C 0 0
S

n
0

0 0 4− 3C
2(C − 1)

n
0

S

n
0 0 6n(1− C) 4C − 3 0 2S
0 −nS 0 0 C 0
0 0 3nS −2S 0 C


, (6)

and B=[Θ3×3, Id3×3]T .We have denoted T=t-t0, S=sinnT ,
C=cosnT , Θ and Id as a full of zeros and identity matrix
respectively.

2.2 Rotational motion

The modified Rodrigues parameters (MRP) representation
(see Marandi and Modi (1987) for more details about
MRP), is chosen. MRP have the advantage of being a
minimal attitude representation which avoids the unit-
norm quaternion constraint. The MRP are denoted as
σσσ=[σ1, σ2, σ3]T , and its relation with the rotation angle,
θrot, and axis e, is σ=e tan(θrot/4). Singularities arise
when θrot=±2π but they can be avoided by constraining
θrot∈(−2π, 2π).

MRP composition rule between attitudes is as follows

σσσS′′/S =[
(1− ‖σσσS′′/S′‖22)σσσS′/S + (1− ‖σσσS′/S‖22)σσσS′′/S′

+2σσσS′/S × σσσS′′/S′
] [

1 + (‖σσσS′/S‖2‖σσσS′′/S′‖2)2

−2σσσS′/S · σσσS′′/S′
]−1

,

(7)

where attitudes between S′/S and S′′/S′ frames of refer-
ence are employed to obtain the attitude between S′′/S.

Rotational motion kinematic and dynamic equations ex-
pressed in a frame of reference fixed on the center of gravity
of the chaser vehicle are

σ̇σσ = C(σσσ)ωωω, (8)

I ω̇ωω +ωωω × Iωωω = M, (9)

where ωωω is the angular velocity vector, M the torque
vector, I the chaser spacecraft inertia matrix and C(σ)
has the following expression

C = 1 + σ2
1 − σ2

2 − σ2
3 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ1σ2 + σ3) 1− σ2
1 + σ2

2 − σ2
3 2(σ2σ3 − σ1)

2(σ1σ3 − σ2) 2(σ2σ3 + σ1) 1− σ2
1 − σ2

2 + σ2
3

 .
Although an ACS consisting of reaction wheels is being
considered, as a simplification the external applied torque,
M, will be directly taken as control input, as in Caubet
and Biggs (2015), instead of the reaction wheels angular
accelerations.

2.3 Coupling between translational and rotational motion

Considering one thruster fixed on the chaser body frame,
the translational and rotational motion coupling arises
trough the propulsion term

u(t) = R(σσσ(t))vu(t), (10)

where v is a unit vector representing the thruster orienta-
tion in the chaser body frame, u is the amplitude of the
single-thruster impulse and R(σσσ) is the rotation matrix
(between the chaser body frame and the LVLH frame)
expressed by means of the MRP

R(σσσ) = Id +
8σσσ×σσσ× − 4(1− ‖σσσ‖22)σσσ×(

1 + ‖σσσ‖22
)2 , (11)

where σσσ× is the cross product matrix. Introducing (10)
into (5) leads to

x(t) = A(t, t0)x(t0) + BR(σσσ(t))vu(t). (12)

Note that the propulsive action projected on the LVLH
frame, u, depends on the vehicle attitude in a non-linear
way, see (10). Moreover, the relation between MRP and
torque given by (8) and (9), is also non-linear.

3. RENDEZVOUS PLANNING PROBLEM

In this section, the constraints and objective function to
minimize are introduced.

3.1 Constraints of the problem

LOS constraint



The LOS area is a region whose purpose is to guarantee
that the chaser spacecraft is all time visible from the dock-
ing point. The LOS region can be defined by the equations
x≥cz(z−z0), x≥−cz(z+z0), x≥cy(y−y0), x≥−cy(y+y0)
and x≥0; these equations limit the relative position state
space by five planes

ALx(t) ≤ bL, (13)

where AL∈IR5×6 and bL∈IR5 summarize the LOS planes
equations algebraically.

Actuators constraints

Velocity increment and torque, produced by thrusters and
reaction wheels respectively, are considered to be bounded

0 ≤ u(t) ≤ umax, (14)

−Mmax ≤Mi(t) ≤Mmax, i = 1, 2, 3. (15)

It is assumed that thruster valves opening times can be
adjusted to produce the exact impulse amplitude.

Terminal constraints

At final time, rendezvous must be accomplished which
implies

x(tf ) = 0. (16)

Moreover, to ease docking operations, constraints on the
final attitude and angular velocity are imposed

σσσ(tf ) = σσσf , ωωω(tf ) = 0. (17)

3.2 Objective function

The chosen objective function, J , seeks to minimize fuel
consumption, which is equivalent to minimize the L1-norm
of the applied impulses

J =

∫ tf

t0

‖u(t)‖1 dt. (18)

3.3 Optimal control problem

Summarizing the translational dynamics (12), the rota-
tional dynamics (8)-(9), the constraints (13)-(17) and the
objective function (18), the optimization problem states
as

minimize
u(t),M(t)

∫ tf

t0

‖u(t)‖1 dt

subject to x(t) = A(t, t0)x0 + BR(σσσ(t))vu(t),
σ̇σσ(t) = C(σσσ(t))ωωω(t),
Iω̇ωω(t) = M(t)−ωωω(t)× Iωωω(t),
ALx(t) ≤ bL,
0 ≤ u(t) ≤ umax,
−Mmax ≤Mi(t) ≤Mmax, i = 1, 2, 3,
x(tf ) = 0,
σσσ(tf ) = σσσf ,
ωωω(tf ) = 0.

(19)

4. SINGLE-THRUSTER RENDEZVOUS OPTIMAL
CONTROL COMPUTATION

In this section, the method to solve the optimal control
problem (19) is presented.

4.1 Attitude flatness property

As attitude dynamics given by (8) and (9) are non-linear,
accounting them in the resolution of the optimal con-
trol problem usually require numerical integration. How-
ever, this system of differential equations has the flatness
property, see Louembet et al. (2009). Parameterizing the
attitude representation, σσσ, with respect to time, these
differential equations can be transformed into algebraic
relations. Inverting (8) and deriving the obtained angular
velocity with respect to time

ωωω(t) = C−1(σσσ)σ̇σσ, (20)

ω̇ωω(t) = C−1(σσσ)σ̈σσ + Ċ−1(σ̇σσ,σσσ)σ̇σσ, (21)

the torque is explicitly obtained as

M(t) = I[Ċ−1(σ̇σσ,σσσ)σ̇σσ + C−1(σσσ)σ̈σσ]
+[C−1(σσσ)σ̇σσ]× IC−1(σσσ)σ̇σσ.

(22)

Note that time dependencies have been omitted at the
right-hand side of (20)-(22) for clarity. The torque is now
directly parameterized as a function of the MRP time
evolution, M(t)=M(σσσ(t)).

4.2 NLP description

Parameterizing the optimal control problem

The use of the translational state transition matrix, see
(12), and the attitude flatness property, see (20)-(22),
avoid numerical integration since the dynamics are re-
placed with algebraic equations. Dividing the manoeuvre
time, t∈[t0, tf ], into Np intervals of duration T=(tf −
t0)/Np, the following attitude parameterization based on
splines (they avoid the Runge phenomenon associated with
high order polynomials, see Gautschi (2012)) for each
interval is chosen

σi(t) =

m∑
j=0

ai,j,k(t− tk−1)j , i = 1, 2, 3,

t ∈ [tk−1, tk], tk = t0 + kT, k = 1 . . . Np.

(23)

Introducing (23) into (22), the torque is parameterized in
terms of the splines coefficients, ai,j,k, for each segment k.
However, splines lack of continuity at a certain degree on
the nodes. Since the attitude profile must have physical
meaning, C2 continuity has to be assured. The following
linear equality constraints between adjacent intervals must
be added to the optimization problem

σσσ(tk,ak) = σσσ(tk,ak−1), k = 2 . . . Np, (24)

σ̇σσ(tk,ak) = σ̇σσ(tk,ak−1), k = 2 . . . Np, (25)

σ̈σσ(tk,ak) = σ̈σσ(tk,ak−1), k = 2 . . . Np, (26)

where the variable ak∈IR3(m+1) collects all the attitude
coefficients for each segment

ak = [a1,0,k, . . . , a1,m,k, a2,0,k, . . . , a2,m,k,
a3,0,k, . . . , a3,m,k]T .

(27)

Evaluating (23) at the end of each interval, the transla-
tional states propagation (12) is posed in discrete form as

xk = Axk−1 + BR(σσσk)vuk, k = 1 . . . Np, (28)

where xk=x(tk) and σσσk=σσσ(tk,ak) are the translational
states and MRP values at the end of each interval, which
will be denoted as nodes.



Minimal rotation path

It is desirable that the minimal rotation path, between the
attitude of consecutive nodes, is chosen by the solver. This
condition is enforced by constraining θrot∈[−π, π] which
is equivalent to constrain the norm of the rotation MRP

‖σσσrot,k(σσσk,σσσk−1)‖2 ≤ 1. (29)

The rotation MRP, σσσrot,k, is obtained with the attitude
composition rule (7) as a function of σσσk and σσσk−1. This
condition adds Np non-linear inequality constraints.

Reduction of torque constraint

Torque constraint is considered in discrete form gridding
each sampling interval k with nM equally spaced subin-
tervals with duration TM=T/nM , at which the torque
constraint is imposed

−Mmax ≤Mi(tk,l,ak) ≤Mmax, i = 1, 2, 3,
tk,l = t0 + (k − 1)T + lTM , l = 0 . . . nM .

(30)

Compact formulation

To ease the notation, following Gavilan et al. (2012), a
compact formulation of the discrete problem will be devel-
oped. Defining xS, uS and aS, as stack vectors containing
6Np translational states, Np impulses and 3(m + 1)Np

attitude coefficients,

xS =


x1

x2

...
xNp

 , uS =


u1
u2
...

uNp

 , aS =


a1

a2

...
aNp

 , (31)

the matrices

F =
[
A, A2, . . . , ANp

]T
, (32)

and G as a block lower triangular matrix with its non-
null elements defined by Gik=Ai−kBRak

v. The matrix
Rak

=R(σ(tk,ak)) is the MRP rotation matrix evaluated
at the node k. The relation between the stack vectors and
matrices defined in (31)-(32) is given by

xS = Fx0 + G(aS)uS. (33)

Discrete optimization problem

The time-continuous optimization problem (19) is now
posed in discrete form as

minimize
uS, aS

‖uS‖1
subject to ALSG(aS)uS ≤ bLS − Fx0,

0 ≤ uS ≤ uSmax,
−Mmax ≤Mi(tk,l,ak) ≤Mmax,
ArendG(aS)uS = −ArendFx0,
σσσ(t0,a1) = σσσ0,
σ̇σσ(t0,a1) = σ̇σσ0,
σσσ(tf ,aNp) = σσσf ,
σ̇σσ(tf ,aNp

) = 0,
AC2aS = 0,
frot(aS) = 0,

(34)

where ALS∈IR5Np×6Np and bLS∈IR5Np stack the LOS
matrix AL (diagonally) and the vector bL, see (13), re-

spectively. The parameter uSmax∈IRNp is a stack vec-
tor whose components are all equal to umax. Arend=
[Θ6×6(Np−1), Id6×6] is employed to impose the rendezvous

condition. The matrix AC2∈IR3(Np−1)×3(m+1)Np collects
all the C2 continuity constraints developed in (24)-(26).

frot∈IRNp contains the rotation MRP unit norm con-
straint, see (29), for each interval. A NLP solver is need
to solve the optimization problem (34).

4.3 Initial guess computation

The NLP problem (34) needs an initial guess to start
the computation of the optimal solution. The initial guess
obtention is composed of two steps: firstly, a six thrusters
spacecraft model with three-degrees of freedom is used to
formulate and solve a linear programming (LP) problem;
then, this LP solution is converted to the NLP decision
variables, uS and aS.

Six thrusters problem formulation

Considering a pair of thrusters available on each LVLH
direction, the control can be expressed at the end of
each sampling interval as uk=[ux,k, uy,k, uz,k]T , hence,
the state propagation is linear: xk=Axk−1+Buk. The
LP optimization problem is posed in the same way as
in Vazquez et al. (2017) but taking care of bounding
the impulses in a conservative way to not overpass the
single-thruster maximum impulse amplitude at any time.
Moreover, a constraint on the final impulse has to be added
to respect the NLP final attitude constraint.

Six thrusters solution transformation to a single-
thruster solution

Once the impulses in three directions, uk, are obtained,
the single-thruster impulse amplitude can be computed
as uk=‖uk‖2. To obtain the attitude parameters, ak, the
MRP at the nodes are obtained and then, a linear system
of equations, to fulfill the C2 continuity conditions at the
nodes, is posed as in Caubet and Biggs (2015). A smooth
attitude profile is obtained if MRP from nodes without
firings (uk=0) are interpolated using the MRP of the nodes
with impulsive actuation (uk>0) as interpolants.

The obtention of the MRP at the nodes is based on
the rotation angle and axis. Denoting by mi the variable
that stores the node k at which an impulse (uk>0) is
given or an attitude has to be reached (instant tNp

),
one can obtain the unitary vector vmi

representing the
direction of the impulse as vmi

=umi
/‖umi

‖2. Using the
impulses directions, vmi

, it is possible to obtain the σσσrot,
that represent the rotation between these orientations.
Therefore, the rotation MRP between tk−1 and tk is

σσσrotk/k−1
= emi tan(skθmi/4), sk =

k −mi−1

mi −mi−1
,

tk, tk−1 ∈ [tmi−1
, tmi

].
(35)

The rotation angle and axis of (35) are obtained from
the unitary vectors computed with the aid of the impulse
orientation

θmi = acos(vmi · vmi−1), (36)

emi
=

vmi
× vmi−1

‖vmi
× vmi−1

‖2
. (37)

Since θmi∈[−π, π], no singularities arise when computing
the rotation MRP. Once σσσrot is obtained, it is possible to
compute the attitude at each node k. MRP at the nodes
are determined applying the attitude composition rule (7).



The spline coefficients are computed by imposing the at-
titude at the nodes and C2 continuity conditions between
adjacent intervals. There will be 12Np − 6 equations and
3(m+ 1)Np degrees of freedom. To close the system, it is
necessary to add 3Np(m − 3) + 6 equations and m ≥ 3.
Initial and final angular velocities are imposed which adds
6 equations, the remaining 3Np(m−3) equations could be
obtained by imposing up to Cm−1 continuity conditions
between adjacent intervals. The previous considerations
constitute a linear system of equations trivial to solve.

5. SIMULATION RESULTS

5.1 Rendezvous model

It is important to remark that although a translational
linear model has been used for the optimal control com-
putation, the simulations showed in this section has been
obtained with the non-linear translational dynamics model
as in Gavilan et al. (2012).

Regarding model parameters, the target vehicle flies in a
circular orbit at 600 km of altitude, which means that
R=6978 km and n=1.0831·10−3 rad/s. Chaser vehicle in-
ertia matrix on its principal axis is chosen to be the one
corresponding to the CNES lightweight satellite MYRI-
ADE, see Louembet et al. (2009),

I =

[
28 0 0
0 45 0
0 0 40

]
kg ·m2. (38)

The LOS area for all simulations is defined with the pa-
rameters: y0=z0=2.5 m and cy=cz=1/ tan(π/4). Total ma-
noeuvre time is tf=900 s with a planning horizon ofNp=20
resulting in sampling intervals of T=45 s. Departure point
is chosen as x0=[400, -250, -200]T m with initial velocity
ẋ0=[1, 1, -1]T m/s. Maximum available impulse and torque
are taken as umax=1 m/s and Mmax=0.02 N·m respec-
tively. The thruster impulse orientation expressed in the
chaser body axes is taken as v=[0, 0, -1]T . Initial angular
velocity value is ωωω(0)=[0, 0, 0]T s−1. Using a 123 Euler an-
gles sequence, the initial attitude is θ1(0)=θ2(0)=θ3(0)=0,
and the final orientation is chosen as θ1(tf )=0, θ2(tf )=π/2
and θ3(tf )≡free. With this attitude the thruster nozzle
points towards the positive x LVLH axis at the end of the
manoeuvre.

5.2 Simulation results

Attitude flatness splines are chosen to be cubic which is
equivalent to take m=3 in (23). The torque constraint grid
is chosen to be of nM=12 points for each interval. The
numerical simulation has been done in MATLAB with
Gurobi optimization package as LP solver for the initial
guess computation whereas IPOPT optimization package
is employed to obtain a solution of the NLP problem.

As shown in Fig.1, rendezvous is achieved while LOS
constraint is not violated. Initial guess cost (measured in
terms of single-thruster) was of 4.120 m/s whereas final
cost is of 3.846 m/s implying a 6% reduction on fuel
consumption. Achieved final distance to target is 0.1609
m with a relative velocity of 0.1981 mm/s which is a
good enough accuracy to start docking operations, see
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Fehse (2003). These deviations are caused by the non-
linear rendezvous model used in the simulation. Propulsive
effort is concentrated at the start of the trajectory to avoid
LOS violation with mid-course corrections to maintain the
vehicle inside the allowed area and a braking final impulse
to achieve rendezvous. It is worth noticing that this
braking impulse is advanced three intervals (the nominal
situation is that it takes place at the final time) because
the final attitude is imposed.

The considered ACS is able to generate a suitable attitude
profile while respecting the problem constraints, see Fig.2
and Fig.4. The attitude profile avoids large rotations by
enabling MRP to take norms higher than unity which
is equivalent to have a rotation MRP with norm lower
than unity at each interval k. The angular velocity profile
reveals that major rotations occurs at the beginning and
end of the manoeuvre with the purpose of pointing the
thruster properly for its first impulse and to reach the final
attitude with null velocity respectively. The initial guess
torque peak has been lowered one order of magnitude, from
0.2578 N·m to 0.02 N·m.

6. CONCLUDING REMARKS

This paper has presented an algorithm that computes
optimal impulse and torque inputs for single-thruster ren-
dezvous scenarios. The algorithm is based on the trans-
lational state transition matrix and the flatness attitude
property which allows an exact description of the system.
Then, the problem is discretized and converted to a NLP
problem. A MPC scheme based on linearization around
this computed NLP solution could be used to handle
with unmodelled dynamics and disturbances. Additionally,
the presented formulation could be extended to a chaser
spacecraft equipped with an arbitrary number of thrusters.
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