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ABSTRACT

This manuscript explores the concept of model-learning predictive control for orbit-attitude station-
keeping in the vicinity of an asteroid. The asteroid gravity field inhomogeneities are assumed to
be unknown a priori. In order to infer the gravity model parameters, these are simultaneously
estimated with the state through an unscented Kalman filter. The progressive gravity model iden-
tification is combined with a model-learning predictive control strategy. The predictive control
scheme increases its accuracy since the model parameters are estimated in-situ. Consequently, the
tracking errors decrease over time as the model accuracy increases. Numerical results are shown
and discussed, comparing the learning-based MPC strategy to a more classical non-learning ap-
proach to demonstrate the benefits and trade-offs of the former with respect to the latter.

1 INTRODUCTION

Small bodies exploration can enable a deeper understanding of the early solar system and planetary
processes [1]. Future exploration missions are aiming to explore Jupiter trojan asteroids (Lucy) and
metallic objects (Psyche). Additionally, the asteroid deflection proof mission DART will impact a
spacecraft on the asteroid moon (Didymoon) of the binary system 65803 Didymos.
Due to their inhomogenous gravity fields, asteroids generate a complex dynamical environment in
their vicinity. This yields large deviations with respect to simplified Keplerian dynamics [2]. For
example, a Keplerian closed orbit may unstabilize into a collision or escape trajectory. As a con-
sequence, the design of stable orbits (e.g. frozen orbits) has received considerable attention in the
literature [3, 4, 5]. However, these works assumes simplified gravity and solar radiation pressure
(SRP) models, thus requiring active closed-loop tracking control in order to maintain its orbit. In that
line, model predictive control (MPC) [6] may be a suitable closed-loop control option in an optimal
manner (e.g. see [7] for MPC-based low Earth orbits station-keeping).
The navigation process around non-visited small bodies is challenging since limited data of the body
(orbit, spin-rate and pole orientation) is known prior to the gravitational capture. In terms of orbit
operations, the main uncertainty source cames from the inhomogenous gravity field. Recent works
are analyzing the feasibility of in-situ gravity field estimation. To this end, [8] employed optical
navigation and satellite-to-satellite radiometric measurements for gravity field determination. An
extended state observer with a regression process was designed in [9] to infer gravity parameters
and solar sail degradation. Unscented Kalman filtering (UKF), developed by [10], has been widely
employed for asteroid navigation in [11, 12, 13] while [14] extended previous works by including the
gravity field estimation.
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Asteroid navigation devices, such as cameras or LIDAR, usually rely on relative measurements with
respect to asteroid surface landmarks. As a consequence, the spacecraft orientation shall guarantee
line-of-sight with the asteroid surface for these devices [15, 16]. In this context, orbit-attitude dynam-
ics is coupled due to the gravity-gradient torque [17]. This torque depends on the spacecraft position
and orientation with respect to the orbit frame. The attitude dynamics in the vicinity of asteroids may
alter passive gravity-gradient stabilization domains [18]. Under the previous consideration, active
closed-loop control has to be considered in order to ensure a proper pointing of sensors.
Taking into consideration the previous facts, this paper presents an integrated model-learning predic-
tive GNC strategy for orbit-attitude station-keeping in the vicinity of asteroids. Closed-loop control
is achieved through the novel paradigm of model-learning predictive control [19]. In that line, UKF-
based navigation is employed to obtain a joint estimation of the state and gravity model parameters.
The guidance and control is MPC-based and benefits from the UKF recursive in-situ learning of the
gravity model, thus increasing its accuracy. The whole strategy follows the concept of tackling model
uncertainty by inferring model parameters.
The structure of the paper is as follows. Section II introduces the orbit-attitude dynamics in the
vicinity of an asteroid. Section III presents the GNC scheme and its modules. Section IV shows
numerical results from the comparison of the presented learning-based MPC with respect to a classical
non-learning scheme. Finally, Section V concludes the paper with some remarks.

2 ORBIT-ATTITUDE DYNAMICS IN THE VICINITY OF AN ASTEROID

In this section, the orbit-attitude dynamics in the vicinity of an asteroid is presented. The main
body is assumed to be uniformly rotating around its major inertia axis which this is the usual case
for the majority of asteroids. Let denote the asteroid-centered inertial frame as I ≡ {0, iI , jI ,kI}
being the asteroid center of mass its origin. Let denote the asteroid-centered rotating frame as A ≡
{0, iA, jA,kA} where kA is aligned with the major inertia axis while iA and jA are contained on the
equatorial plane. The frame A rotates with angular velocity ωωωA/I = ωTkA (ωT ≡ constant) with
respect to the inertial frame. Let denote the orbit frame as O ≡ {r, iO, jO,kO} which evolves along
the satellite orbit r. The term iO is the radial component (positive outwards the main body), kO the
normal component (parallel to the spacecraft angular momentum) and jO, the tangential component,
completes the right-handed system. Finally, let denote the spacecraft body and camera frames as
B ≡ {r, iB, jB,kB} and C ≡ {r, iC , jC ,kC} respectively. The camera boresight is aligned with the
kC direction. These frames of reference are depicted in Fig. 1.

2.1 Orbital motion

This paper employs the modified equinoctial elements (MEE), see [20] for the details, for the or-
bit state representation xorb = [p, f, g, h, k, L]T . This parameterization avoids the classic orbital
elements, {a, e, ω, i,Ω, ν}, singularities for circular (e = 0) and equatorial orbits (i = 0◦, 180◦).
However, retrograde equatorial orbits are still singular for the MEE. The Gauss variational equations
(GVE) for the modified equinoctial elements are written as as ẋorb = fGVE(xorb,F

O) [20], where
FO = [FO

r , F
O
t , F

O
n ]T is the non-Keplerian acceleration expressed in the orbit frame O. This term is

composed of natural perturbations and the thrusters control

F = Fgrav︸︷︷︸
inhomogeneous gravity

+ Fsun︸︷︷︸
Sun gravity

+ FSRP︸︷︷︸
solar radiation pressure

+ Fu.︸︷︷︸
control acceleration

(1)
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Figure 1: Inertial, asteroid, orbit, body and camera frames of reference.

2.1.1 Inhomogeneous gravity field

This is the most dominant term in a low asteroid orbit. In this work, the inhomogenous gravity field is
modelled through the spherical harmonics expansion series [21]. As such, the non-Keplerian gravity
is given by, see [22], the following series truncated at imax degree and order

FS
p =

imax∑
i=2

i∑
j=0

µ

r2

(
Re

r

)i 
−(i+ 1)P

(j)
i (Cij cos(jλ) + Sij sin(jλ))

j

cosφ
P

(j)
i (−Cij sin(jλ) + Sij cos(jλ))

cosφP
(j)′

i (Cij cos(jλ) + Sij sin(jλ))

 , (2)

where µ is the asteroid main gravitational parameter, r = ‖r‖2 is the orbital radius, λ = arctan (yA/xA)
is the longitude (measured counter clockwise in the equatorial plane xAyA) and φ = arcsin(zA/r) is
the latitude. Note that Eq.(2) is expressed in the S frame. The S frame denotes the spherical frame
as S ≡ {r, iS, jS,kS} with iS being the radial direction, jS pointing to the east and kS to the north
pole. The spherical harmonics coefficients Cij and Sij are normalized with respect to the normaliza-
tion radius Re (which is usually taken as the asteroid maximum elongation). The term P

(j)
i is the ith

degree normalized Legendre polynomial of the first kind in sinφ and P (j)′

i is its first derivative with
respect to sinφ. To insert the non-Keplerian gravity into the GVE, Eq.(2) has to be projected in the
orbit frame as

Fp(xorb) = RO
I (xorb)R

I
AR

A
S (λ, φ)FS

p (r, λ, φ), (3)

where RA
S denotes the rotation matrix from the spherical to the asteroid frame, RI

A is the rotation
matrix from the asteroid to the inertial frame (it only depends on the asteroid rotation rate ωT which is
constant) and RO

I denotes the rotation matrix from the inertial to the orbit frame. Note that [r, λ, φ]T ≡
forb(xorb) where forb(xorb) : R6 → R3 is the mapping function between MEE and position coordinates
in the asteroid frame.
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2.1.2 Solar perturbations

The solar perturbations are the Sun gravity and its radiation pressure. The Sun gravity perturbation is

Fsun(xorb) = RO
I (xorb)µ�

(
r� − r

‖r� − r‖3
2

− r�
‖r�‖3

2

)
, (4)

where r� is the Sun position in the asteroid-centered inertial frame and µ� = 1.3271244 ·1011 km3/s2

its standard gravity parameter. The solar radiation pressure is considered in a simplified way as

FSRP(xorb) = −RO
I (xorb)

CRp1AUA

m

(
r1AU

r�

)2
r� − r

‖r� − r‖2

, (5)

where CR, A and m are the spacecraft reflectivity coefficient, exposed surface and mass respectively.
The term p1AU = 4.5 µPa is the SRP at r1AU = 1 AU.

2.2 Rotational motion

In this paper, the modified Rodrigues parameters (MRP), see [23], σσσ = [σ1, σ2, σ3]T are employed to
describe the spacecraft attitude. They are preferred over the classical quaternions since they do not
need to account for the unit-norm constraint, thus easing optimization constraints. The MRP relation
with the rotation axis erot and angle θrot is σσσ = erot tan(θrot/4). Note that singularities arise when
θrot = ±2π. These singularities could be avoided by constraining θrot ∈ [−π, π] since {erot, θrot} ≡
{−erot, 2π − θrot} represent the same attitude. The rotation matrix R, as a function of the MRP, is
given by

R(σσσ) = I +
8σσσ×σσσ× − 4(1− ||σσσ||22)σσσ×

(1 + ||σσσ||22)2
, (6)

being σσσ× the cross-product matrix associated to a MRP, see [17]. The MRP atttitude composition rule
is given by

σσσ0
σσσrot−−→ σσσf , σσσf =

(1− ‖σσσrot‖2
2)σσσ0 + (1− ‖σσσ0‖2

2)σσσrot + 2σσσ0 × σσσrot

1 + (‖σσσrot‖2‖σσσ0‖2)2 − 2σσσTrotσσσ0

. (7)

The MRP attitude kinematics is σ̇σσ = C(σσσ)ωωω/4 where ωωω = [ω1, ω2, ω3]T is the body angular velocity
with respect to the inertial frame I expressed in the body frame B. The matrix C is given by

C(σσσ) =

1 + σ2
1 − σ2

2 − σ2
3 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ1σ2 + σ3) 1− σ2
1 + σ2

2 − σ2
3 2(σ2σ3 − σ1)

2(σ1σ3 − σ2) 2(σ2σ3 + σ1) 1− σ2
1 − σ2

2 + σ2
3

 . (8)

Since landmark-based navigation requires sensors pointing towards the asteroid surface, the body
orientation with respect to the orbit frame, σσσB/O, is of interest, thus the kinematics equation can be
modified accordingly [17]

σ̇σσB/O =
1

4
C(σσσB/O)

[
ωωω −R(σσσB/O)ωωωOO/I(xorb)

]
, (9)

where ωωωOO/I is the angular velocity of the orbit frame with respect to the inertial frame. In that line,
let define the attitude state as xatt = [σσσTB/O, ωωω

T ]T .
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Figure 2: Integrated model-learning GNC scheme.

The attitude dynamics is as follows

Jω̇ωω = T−ωωω × Jωωω, T = Tp︸︷︷︸
gravity-gradient

+ Tu︸︷︷︸
control torque

, (10)

where J is the inertia matrix and the external torque T is composed of the gravity-gradient torque,
Tp and the control torque Tu. In this manuscript, the gravity-gradient torque model is computed
assuming a discrete mass distribution. Let define the spacecraft mass distribution through lmax discrete
masses ml (l = 1 . . . lmax) placed at ∆rl relative positions with respect to the center of mass r. Then,
the gravity-gradient torque computation yields

Tp =
lmax∑
l=1

ml∆rBl × FB
g (r + ∆rl, σσσ), (11)

where the term FB
g = RB

O(σσσ) [Fc(r) + Fp(r)] collects the Keplerian (Fc = [−µ/r2, 0, 0]T ) and non-
Keplerian gravity. Note that r ≡ forb(xorb).

3 INTEGRATED MODEL-LEARNING GNC SCHEME

The proposed GNC architecture is shown in Fig. 2. A camera and a LIDAR are assumed as orbit
navigation devices while star-trackers and gyroscopes are employed for attitude determination. The
internal data processing of these devices is out of the scope of this work. This manuscript focuses
on the GNC algorithms. As such, orbit and attitude UKF work independently with their respective
sensors and models since attitude measurements are taken at higher frequencies than orbit ones. How-
ever, they periodically exchange their outputs as the camera orientation (orbit) and gravity-gradient
torque (attitude) have to be accounted for. The orbit-attitude guidance and control algorithms are
MPC-based. Since the filters estimate both the state and the gravity parameters for the guidance and
control module, a model-learning predictive control scheme is obtained.

3.1 Asteroid navigation with in-situ gravity estimation

The UKF is employed as the navigation estimation technique. Algorithm 1 shows the UKF steps.
The UKF assumes the estimation variable and measurements are normally distributed such that
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Algorithm 1 (UKF with process noise estimation)
Input: µµµ0, ΣΣΣ0, z, Qy, Qz

Output: µµµ, ΣΣΣ, Q̂y

1: Sigma points generation: χχχ[k] = µµµ0 + sgn(k)
(√

(n+ λ)ΣΣΣ0

)
|k|
, k = −n, . . . 0 . . . n.

2: Process UT: µµµ′ =
n∑

k=−n
w

[k]
m g(χχχ[k]), ΣΣΣ′ =

n∑
k=−n

w
[k]
c

(
g(χχχ[k])− µµµ′

) (
g(χχχ[k])− µµµ′

)T
+ Qy.

3: Measurements UT: Z[k] = h(g(χχχ[k])), ẑ =
n∑

k=−n
w

[k]
m Z[k], S =

n∑
k=−n

w
[k]
c

(
Z[k] − ẑ

) (
Z[k] − ẑ

)T
+

Qz

4: Compute Kalman gain: H =
n∑

k=−n
w

[k]
c

(
g(χχχ[k])− µµµ′

) (
Z[k] − ẑ

)T
, K = HS−1.

5: Predict the state and its covariance: µµµ = µµµ′ + K(z− ẑ), ΣΣΣ = ΣΣΣ′ −KHΣΣΣ′..
6: Estimate the process noise and its covariance: ŵ = K(z− ẑ), Q̂y = (1− α)ŵŵT + αQy.

y ∼ Nn(µµµ,ΣΣΣ) and z ∼ Nm(0,Qz) respectively. The state propagation and its mapping to mea-
surements is usually dependant on non-linear functions g and h. To tackle that, the UKF provides
a simplified particle-based approach, named as the unscented transform (UT), in order to obtain the
result of applying a non-linear function to a normal distribution. The UT generates 2n + 1 particles
(named sigma points) symmetrically distributed with respect to the mean. The non-linear function
is applied to the sigma points and the transformed normal distribution is reconstructed by computing
the sigma points mean and covariance. In particular, the UT is employed for the process function
between measurements g (step 2), and the subsequent transformation to measurements space h (step
3). The process and measurements uncertainty is added through the covariance matrices Qy and Qz

respectively. After the previous steps, the Kalman gain is computed using the cross-correlation (step
4). When the measurements z are available the state and its covariance are predicted (step 5).
The UKF requires tuning of the sigma points spread, the normal distribution reconstruction weights
and the process/measurements covariance. The measurements uncertainty Qz is usually known as
provided by sensors datasheet. On the other hand, the process covariance is unkown since it quan-
tifies the mismatch between truth and model dynamics (which may be time-varying). To overcome
that issue, the process noise is recursively updated with the resulting innovation, (z − ẑ), using a
fading factor α ∈ [0, 1] (step 6). Finally, following [10], the spread of sigma points (step 1) and
reconstruction weights are mastered by the tuning parameters {θ, β, λ} such that w[0]

m = λ/(n + λ),
w

[0]
c = w

[0]
m (1− θ2 + β) and w[k]

c = w
[k]
m = 1/[2(n+ λ)], k 6= 0.

3.1.1 Orbit filter

The orbit filter provides an estimation of the orbit and the gravity spherical harmonics up to a certain
degree and order norb × norb. Then, the orbit estimation state is

yorb = [xTorb, Cij, Sij]
T , i = 1 . . . norb, j = 1 . . . norb, (12)

and the orbit process is represented by the following function

gorb(yorb) = [ϕt,t0orb (xorb,0, Cij, Sij,Fu), Cij, Sij]
T , (13)

where ϕt,t0orb : R9+
∑norb

i=2 2i+1 → R6 is the flow of the MEE GVE (fGVE) only accounting for the norb×norb

inhomogeneous gravity and the applied control. The gravity parameters remain invariant along the
process.
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The orbit measurements are taken by a camera and a LIDAR. These devices track identified features
on the asteroid surface, named as landmarks, which are surveyed at a higher orbit phase (out of
the scope of this work). Consequently, the set of landmarks positions is known as rAq being q the
landmark index. The camera provides the landmark pixel row and column on the camera plane as
pq = [pxq , pyq ]

T while the LIDAR provides ranging distance ρq between the satellite and the landmark.
Assuming a camera pinhole model, the MEE can be mapped to landmarks pixels. First, let express
the satellite-landmark relative position, ρρρq, in the camera frame

ρρρCq = RC
BR

B
I (σσσB/I)[R

I
Aforb(xorb)− rAq ], (14)

where the spacecraft has to be adequately oriented due to the term RB
I . Since the camera bore-

sight was assumed on the zC direction, the landmark coordinates on the image plane are [uq, vq] =
ffoc[ρxq , ρyq ]/ρzq . The term ffoc is the focal length.Then, accounting for the pixel resolution (in terms
of pixel width) and its discrete nature, the pixel row and column is given by

pq = [pxq , pyq ]
T = [buq/pwidthc, bvq/pwidthc]T . (15)

The LIDAR ranging distance directly reads as ρq = ‖ρρρq‖2. As a limited number of m landmarks
can be tracked between UKF calls (due to lighting conditions and feature recognizition algorithm
limitations), the orbit measurement is

zorb = [pTq1 , ρq1 , . . .p
T
qm , ρqm ]T . (16)

3.1.2 Attitude filter

The attitude filter estimates the spacecraft rotational state and the gravity spherical harmonics to a
certain degree and order natt × natt (usually, natt ≤ norb). Then, the attitude estimation state is

yatt = [σσσT ,ωωωT , Cij, Sij]
T , i = 1 . . . natt, j = 1 . . . natt, (17)

and the attitude process function is

gatt(yatt) = [ϕt,t0att (σσσ,ωωω,Cij, Sij,xorb,Tu), Cij, Sij]
T , (18)

where ϕt,t0att : R9+
∑norb

i=2 2i+1 → R6 is the attitude kinematics and dynamics flow. Since, the sensors take
measurements with respect to the inertial frame, the orientation and angular velocity are referred to
that frame within the filter. The body orientation with respect to the orbit frame can be subsequently

reconstructed as σσσ
−σσσO/I−−−−→ σσσB/O where the orbit frame orientation depends on the orbit state. The

orbit state estimation is also needed to compute the gravity-gradient torque.
The attitude measurements are assumed to be provided by star-trackers and gyroscopes. In a simpli-
fied way, these devices provide direct orientation and angular velocity measurements of the body with
respect to the inertial frame, thus

zatt = [σσσTB/I ,ωωω
T ]T . (19)

3.2 Model-learning guidance and predictive control

The control goal is to station-keep a circular orbit (which is bounded by definition) while guaranteeing
camera line-of-sight with the asteroid surface. In order to achieve these requirements, an orbit-attitude
MPC-based guidance and control strategy is presented. The prediction model is recursively updated
with the filter gravity parameters estimation. The guidance algorithm generates a reference to be
subsequently tracked by a simplified control static program.
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3.2.1 Orbit guidance

A circular orbit is achieved if the semi-major axis a is constant and the eccentricity e is null. These
variables are expressed in terms of MEE as a = p/(1 − e2) and e =

√
f 2 + g2. If the target cir-

cular orbit is of ā radius, then {p̄, f̄ , ḡ} = {ā, 0, 0} (note that the bar denotes the reference). To
prescribe these elements, the reference control acceleration cancels the inhomogeneous gravity field
perturbation as F̄u(t) = − [Fgrav,r(x̄orb), Fgrav,t(x̄orb), 0]T . Then, the reference GVE yields

˙̄p = ˙̄f = ˙̄g = 0, ˙̄h =

√
p̄

µ

s̄2F̄O
grav,n

2w̄
cos L̄,

˙̄k =

√
p̄

µ

s̄2F̄O
grav,n

2w̄
sin L̄, ˙̄L =

√
µp̄

(
w̄

p̄

)2

+
1

w̄

√
p̄

µ
(h̄ sin L̄− k̄ cos L̄)F̄O

grav,n.

(20)

This exploits the fact, that for a circular orbit, the radial-tangential motion (ṗ, ḟ , ġ) is independent
of the normal elements (h, k, L) and perturbation (Fgrav,n). As such, the normal motion (ḣ, k̇, L̇)
evolves freely and no control is applied in that direction. The reference is generated through numerical
integration, over the control horizon, of the ordinary differential equation (ODE) system given by
Eq.(20). The propagation yields a time-varying orbit reference

x̄orb(t) = [p̄, f̄ , ḡ, h̄(t), k̄(t), L̄(t)]T . (21)

3.2.2 Attitude guidance

In order to maintain camera pointing to the asteroid surface, a stationary body orientation with respect
to the orbit frame has to be ensured. Then, the objective is to keep σσσB/O ≡ constant. In this case, the
required torque to cancel gyroscopic and gravity-gradient terms is neglected, such that

x̄att(t) =
[
σ̄σσTB/O,

(
R(σ̄σσB/O)ωωωOO/I(x̄orb(t))

)T]T
, T̄u(t) ≈ 0, (22)

where the angular velocity reference has nullifies Eq.(9) attitude kinematics as ˙̄σσσB/O = 0. This is a
ficticious reference (the control has to cancel its drift) by design but eases computational burden as
no integration other than the orbit reference is required in light of Eq.(22).

3.3 Control

This section briefly condenses orbit-attitude controllers for the sake of compactness. Let define the
tracking error as ∆x(·)(t) = x(·)(t) − x̄(·)(t) where the subscript (·) ≡ {att, orb} refers to either the
attitude or orbit case. Let denote the control as u(·) ≡ {Tu, Fu} which refers to the torque (attitude)
or control acceleration (orbit) respectively. The subscript (·) is omitted in the sequel.

3.3.1 Continuous tracking problem

The continuous form of the MPC optimization problem is

min
∆x(t),∆u(t)

J = 1
tf−t0

∫ tf
t0

(
γ∆xT (t)Px∆x(t) + ∆uT (t)∆u(t)

)
dt,

s.t. ∆ẋ(t) = ẋ(t,u(t))− ˙̄x(t, ū(t)), u(t) = ū(t) + ∆u(t),
−umax ≤ u(t) ≤ umax,
∆un(t) = 0, if (·) ≡ orb,

(23)
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where the incremental control ∆u has been introduced. The last constraint precludes normal control
for the orbit case. The objective function aims to minimize a combination of tracking errors and
control effort using γ > 0 as the weight parameter. The optimal tracking control problem (23) is
a non-linear continuous optimization problem with infinite degrees of freedom. Using dynamics
linearization and discretization, problem (23) will be reduced into a static quadratic program.

3.3.2 Static control program

Since the goal is to station-keep a reference orbit, the position tracking errors are expected to be
low with respect to the orbital radius ‖∆r‖2/ā << 1. Consequently, the gravity acceleration and
gravity-gradient torque perturbations can be linearized with respect to the orbit reference such that

∆ẋ(t) = A(x̄(t), ū(t))∆x(t) + B(x̄(t), ū(t))∆u(t) + ∆ ˙̄x(t). (24)

Equation (24) represents a linear time-varying system (LTV) due to the time-varying reference. Note
that ∆ ˙̄x(t) = ẋ(x̄(t), ū(t)) − ˙̄x(t) is the reference drift which accounts for a fictitious guidance
reference. A LTV system admits a general solution in terms of the state transition matrix ΦΦΦ

∆x(t) = ΦΦΦ(t, t0)∆x0 +

∫ t

t0

ΦΦΦ(t, τ)B(τ)∆u(τ)dτ + ∆x̄(t), (25)

where the transition matrix is obtained by integration of the following ODE

Φ̇ΦΦ(t, t0) = A(x̄(t))ΦΦΦ(t, t0), ΦΦΦ(t0, t0) = I. (26)

Note that for both orbit-attitude cases, Eq.(26) is an ODE system with 36 differential equations.
Using the general solution of Eq.(25), the continuous control problem (23) can be discretized as fol-
lows. Let divide the control horizon into N sampling intervals of duration ∆t = (tf − t0)/N . Then,
the tracking error equation Eq.(25) is evaluated at discrete instants tk = t0 +k∆t (k = 1 . . . N) while
the control is assumed constant, uk, during the sampling interval k. Under the previous considera-
tions, a finite static program is posed as

min
∆uk

J =
N∑
k=1

(
γ∆xTkPx∆xk + ∆uTk∆uk

)
,

s.t. ∆xk = ΦΦΦk,0∆x0

+
∑k

i=1 ΦΦΦk,i

(∫ ti
ti−1

ΦΦΦ(ti, τ)B(τ)dτ
)

∆ui + ∆x̄k,

−umax ≤ ūk + ∆uk ≤ umax,
∆un,k = 0 if (·) ≡ orb,

(27)

which is a QP problem with 3N decision variables.

4 NUMERICAL RESULTS

This section presents the model-learning predictive controller numerical results as well as a compari-
son with respect to a non-learning controller where the filter does not communicate the model update
to the MPC guidance and control. The simulations are carried out in MATLAB using a i7-8700 CPU
3.2 GHz processor.
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4.1 Scenario parameters

The target asteroid is 433 Eros. This small body was accurately characterized during the NEAR
Shoemaker mission. Eros has a gravitational parameter of µ = 4.4628 · 105 m3/s2, a rotation period
of T = 5.27 h around its major inertia axis and its inhomogeneous gravity field is known up to 15×15
degree and order [24]. These coefficients are normalized with Re = 16 km and are employed to
simulate the truth dynamical environment. In the asteroid inertial frame, the Sun position is assumed
as r� = [1.46, 0, 0]T AU with respect to the asteroid center of mass.
The satellite has a camera with 2048×2048 pixels resolution, a 30◦ field of view, and 300 mm of focal
length. It is assumed that at most m = 3 landmarks can be tracked, betweeen filter calls. These are
chosen as the ones with the higher relative elevation with respect to the camera boresight (zC ≡ −xB).
A set of 522 surface landmarks positions from Eros mission data [24] is assumed as known. Table
1 shows the considered sensors noises datasheet (the star tracker noise is introduced via the rotation
angle θrot).

Table 1: Sensors datasheet
Sensor Variable Bias 1-σσσ noise
Camera pq [0,0]T px [0.5,0.5]T px
LIDAR ρq 0 m 5 m

Star tracker θrot 0 arcsec 10 arcsec
Gyroscopes ωωωgyro [5,5,5]T ◦/h [0.05,0.05,0.05]T ◦/h

The control acceleration and torque bounds are taken as Fumax = [1, 1, 1]T cm/s2 and Tumax =
[1, 1, 1]T N · cm. Since a continuous acceleration is always applied, the specific impulse is taken
as the one of an electric thruster, Isp = 2900 s. The satellite mass is m = 1000 kg and its principal
inertias are {J11, J22, J33} = {2000, 16400, 17600} kg ·m2. The coefficient of reflectivity and SRP
exposed area are CR = 1.4 and A = 10 m2 respectively.
Regarding GNC tuning parameters, the filters spherical harmonics estimation degree and order is
{norb, natt} = {4, 2}. The UKF tuning parameters are taken as {α, θ, β, λ} = {0.98, 10−3, 2, (θ2−
1)n} being n the dimension of the extended state (27 for orbit and 14 for attitude). Regarding sam-
pling rates the attitude and orbit UKF are executed each 3.6 s and 36 s respectively. The attitude filter
sampling rate is one order of magnitude higher than the orbit as its sensors takes measurements with
faster frequencies. The guidance and control algorithm parameters (control horizon, discretization
intervals, interval duration and tracking error weight) are stated in Table 2.

Table 2: Guidance and control algorithm parameters.
Control horizon [min] N [−] ∆t [s] γ [−]

Attitude 6 10 36 103

Orbit 240 40 360 103

For all the simulations, an accurate navigation fix is considered available, thus xorb(t0) = x̂orb(t0);
xatt(t0) = x̂att(t0). However, gravity inhomogeneities are completely unknown as Ĉij = Ŝij = 0.
The initial 1-sigma uncertainty on all the gravity parameters is taken as 5 · 10−3. The state initial
uncertainty follows a diagonal covariance matrix such that ΣΣΣorb,11(t0) = 52, ΣΣΣorb,ii(t0) = (5 · 10−6)2

for i = 2, . . . 6 while ΣΣΣatt,ii(t0) = (10−6)2 for i = 1, 2, 3 and ΣΣΣatt,ii(t0) = (10−8)2 for i = 4, 5, 6.
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4.2 Simulations

The reference orbit is defined by {ā, ē} = {34 km, 0}. To assess the efficiency of the learning-based
control methodology, several initial inclinations i0 = {30◦, 60◦, 90◦, 120◦, 150◦} are combined with
these initial semi-major axes a0 = {33, 33.5, 34, 34.5, 35} km. The initial orbit is circular, e0 = 0
and the other elements are ω0 = Ω0 = ν0 = 0◦. The previous combination provides 25 cases for each
controller. The duration of each scenario is two weeks.
Figure 3 shows the satellite trajectories, relative to the asteroid, for different initial inclinations. It
can be observed that no escape or collision with the asteroid arises. Figure 4 shows the orbital radius
evolution, for both controllers, of the polar orbit scenario with different initial conditions. It can
be deduced that the learning-based MPC achieves a more accurate reference tracking than the non-
learning MPC scheme.
The numerical comparison of both control strategies is shown in Tables 3-4 for orbit-attitude control
performance. The reported values average the five scenarios resulting from applying different initial
conditions for each inclination. The orbit control metrics are fuel consumption (mF ), average and
maximum absolute tracking errors (∆R and ∆Rmax). The attitude control metrics are the average
torque (TU ) and the average orientation error in terms of pitch, roll and yaw angles (∆ΘΘΘ). The orbit
results, see Table 3, shows that the learning-based MPC control can provide up to a 29% increase
(i0 = 90◦) or an 8% (i0 = 30◦) decrease in fuel consumption. However, the developed controller
reduces tracking errors between a 7% to a 91%, with respect to the non-learning MPC, while also
guaranteeing the error is below 1 km. The attitude results, see Table 4, shows a decreasing trend,
ranging between 9-19%, in terms of torque demands for the learning-based MPC with respect to the
non-learning MPC. This does not provoke any loss of accuracy in terms of the orientation angles.
Nonetheless, it is observed that the pitch presents a slight offset (≈ 1.55◦) for all simulations.
An example of orbit filter estimation in terms of position error and relevant gravity parameters
(|Cij|, |Sij|>2·10−3) is shown in Fig.5-6. The position error shows a decreasing trend as the grav-
ity estimation converges. The average position error decreases from 23.6 m along the first week to
14.4 m during the second week. Gravity parameters are accurately estimated for second order gravity
terms (<2% final error for all the parameters) while third and fourth order gravity show significant
discrepancies with truth values. This may be caused by the absorption of unmodelled dynamics such
as higher order gravity and solar perturbations.

Table 3: Orbit control performance of learning-based MPC and non-learning MPC

Simulation Learning-based MPC Non-learning MPC
mF [kg] ∆R [m] ∆Rmax [m] mF [kg] ∆R [m] ∆Rmax [m]

i0 = 30◦ 1.7943 159.17 864.67 1.9668 1280.5 1829.2
i0 = 60◦ 1.3547 264.84 983.92 1.2640 284.90 921.90
i0 = 90◦ 1.4034 316.38 971.50 1.0903 797.04 1247.9
i0 = 120◦ 1.3378 167.35 840.81 1.1330 241.13 820.26
i0 = 150◦ 1.7447 129.85 847.83 1.6742 1390.8 1681.5

The computational times of the GNC algorithms have been measured for the learning-based MPC.
The attitude and orbit filters average execution times are, 47.7 ms and 71.4 ms respectively (being the
peak of 51.9 ms and 77.1 ms). On the other hand, attitude and control guidance and control modules
average execution times yields 1.53 s and 3.76 s respectively (being the peak of 1.65 s and 5.11 s).
These are promising results in terms of demonstrating the potential concept autonomy.
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Figure 3: Trajectories in the asteroid frame for learning-based MPC. Black dots: landmarks.
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Figure 4: Orbital radius for the polar orbit case. Black-dashed: reference; blue: learning-based MPC;
red: non-learning MPC.
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Table 4: Attitude control performance of learning-based MPC and non-learning MPC

Simulation Learning-based MPC Non-learning MPC
TU [mN·m] ∆ΘΘΘ [◦] TU [mN·m] ∆ΘΘΘ [◦]

i0 = 30◦ 0.6199 [1.55, 0.02, 0.05]T 0.7634 [1.59, 0.02, 0.04]T

i0 = 60◦ 0.5739 [1.55, 0.02, 0.05]T 0.6556 [1.59, 0.02, 0.04]T

i0 = 90◦ 0.4986 [1.54, 0.02, 0.05]T 0.5481 [1.59, 0.02, 0.04]T

i0 = 120◦ 0.5928 [1.54, 0.02, 0.05]T 0.6894 [1.58, 0.02, 0.05]T

i0 = 150◦ 0.6248 [1.54, 0.02, 0.05]T 0.7777 [1.58, 0.02, 0.04]T
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Figure 5: Learning-based MPC position error (left) and second-order gravity estimation (right).
Dashed≡truth; solid≡estimation; dot-dashed≡1-σ uncertainty.

5 CONCLUSIONS

An integrated model-learning predictive GNC strategy for orbit-attitude station-keeping in the vicinity
of an asteroid has been presented. The develop algorithmic architecture combines unscented Kalman
filtering with model predictive control. The main source of model uncertainty comes from the asteroid
gravity field inhomogeneities which can not be sensed until the satellite is close enough to the asteroid.
The proposed concept has the potential to undertake gravity estimation, at a minimal extent, while
guaranteeing the satellite lies in a closed orbit. This may enable further operations such as transferring
the satellite to a frozen orbit in terms of second order gravity.
The learning-based MPC has been compared to a non-learning MPC demonstrating that, in exchange
for a slight increase in fuel consumption, a more accurate orbit tracking is always achieved. Moreover,
the attitude control demands are always lower for the learning-based control without loss of accuracy.
Regarding future work, recent asteroid exploration works, such as [14], are analyzing the potential
benefits of using multiple spacecraft mission concepts instead of the considered single satellite con-
figuration. Extending this scheme to a multiple satellite mission is left as future work.
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