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ABSTRACT

In this paper the spacecraft rendezvous hovering phase, under circular restricted three-body
problem assumptions, is addressed. The objective is to stay close to a Near-Rectilinear Halo Orbit,
similar to the one proposed for the future Lunar Orbital Platform-Gateway. The relative dynam-
ics are linearized assuming the vehicles are close enough. Then, a simplified propagation method
based on assuming the state matrix as constant is developed. This allows to obtain an analyti-
cal approximate solution based on the state matrix eigendecomposition. Using this propagation
model, the hovering phase problem is posed and recast as a static program. This static program
is solved periodically to update the required control sequence. The numerical results demonstrate
the efficiency of the proposed propagation method and the hovering phase mission fulfilment.

Keywords: Linear-time varying systems; Spacecraft control; Three-body problem.

Nomenclature

D = Distance between primaries
I = Inertial frame
r = Absolute position
S = Synodic frame
t = Time
∆V = Velocity increment
x = Relative state
θ = Phase angle
µ = Standard gravitational parameter
ρρρ = Relative position
ΦΦΦ = State transition matrix
ωωω = Angular velocity
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1 Introduction
Demonstrating autonomous close proximity operations under the three-body problem context is

gaining attention recently, a key reason being that International Space Station partners plan to build a
space station, named Lunar Orbital Platform Gateway (LOP-G), in the cislunar space (see Ref. [1]).

The preferred option to place the LOP-G is a southern Near Rectilinear Halo Orbit (NRHO) around
the L2 Earth-Moon system equilibrium (see Ref. [2]). This is due to the evidence of ice presence at
the Moon south pole (see Ref. [3]), and the possibility of observing the far side of the Moon. The
NRHOs are members of the broader set of the L1 and L2 halos families arising in the circular restricted
three-body problem (CRTBP). The NRHOs present also favourable stability properties, thus reducing
station-keeping needs (see Ref. [4]).

When applied to space operations, the CRTBP literature has mainly focused on exploiting the orbit
invariant manifolds to obtain low energy transfers (see Ref. [5, 6]). However, close proximity operations
require to explicitly take into account the relative motion between the two vehicles. Some recent works
have addressed this topic. Reference [7] described the relative dynamics in a local frame attached to
the target, Ref. [8] implemented a close rendezvous strategy based on line-of-sight hold points and
Ref. [9] developed a chance-constrained model predictive controller (MPC) to ensure robust line-of-
sight constraints satisfaction.

In the context of spacecraft rendezvous, the hovering phase consists on a spacecraft maintaining its
relative position with respect to a known location (e.g. a leader vehicle). This mission phase has been
largely addressed under Keplerian assumptions (see Ref. [10, 11]). However, as far as the authors know,
hovering phase strategies under the CRTBP have not been studied. The objective of this work is to pro-
vide a control strategy for the CRTBP hovering phase. The main assumption is that the leader vehicle
evolves naturally in a periodic orbit whereas the follower is equipped with chemical thrusters. Conse-
quently, the control action is considered to be impulsive. Some relevant works on impulsive close prox-
imity operations, under Keplerian assumptions, can be found in Ref. [12] where passive safe trajectories
are designed, Ref. [13] where a MPC is presented to handle disturbances and Ref. [14] transformed the
rendezvous problem into an asymptotic stabilization of a switching system.

This paper linearizes the CRTBP relative dynamics assuming the vehicles are close enough (∼
1 km). However, for a leader evolving in a periodic orbit, the resulting system is linear time-varying
(LTV). Additionally, CRTBP orbits are described in terms of discrete numerical positions and velocities
(see Ref. [15]), without any analytical representation available. This fact precludes the obtention of a
closed-form expression for the state transition matrix (STM) as in the Keplerian problem (see Ref. [16]).
An approach to obtain the STM could be numerical integration (see Ref. [9]). However, this augments
computational burden. To solve this issue, this work proposes a novel approach by assuming the system
as linear time-invariant (LTI) for a short propagation period (the target position is considered stationary).
This allows to conveniently express the relative state in terms of the state matrix eigendecomposition.
When the propagation interval ends, the leader position is updated and the state matrix eigendecompo-
sition is computed again. This approach reduces the computational burden with only a small loss of
accuracy and provides some information about the relative state solution structure.

Using the exact solution of the approximate dynamics, discretization and a compact formulation, the
continuous hovering problem is transformed into a finite tractable static program. The result is a linear
programming (LP) problem which is efficient to solve. This allows to sequentially update the control
sequence in an MPC fashion (see Ref. [17]) to account for non-linearities and discretization errors.

The structure of the paper is as follows. Section II presents the CRTBP relative motion and its
linearization. The propagation models for the linearized system are presented in Section III. Section IV
states the hovering problem and recasts it to LP form. Section V presents numerical results of interest.
Finally, Section VI concludes the paper with some additional remarks
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2 CRTBP relative motion
In this section, the linear relative motion model is derived. Firstly, the CRTBP assumptions are pre-

sented. Then, the relative motion dynamics between two vehicles is obtained. Finally, the gravitational
terms are linearized assuming the two vehicles are close enough.

2.1 CRTBP dynamics
Under CRTBP assumptions, i.e., M1 > M2 ≫ m (being M1, M2 the primaries’ masses and m the

spacecraft mass) and a constant distance D between primaries, the spacecraft dynamics can be expressed
in the synodic frame. Denote the inertial frame by I : {O, iI, jI,kI} where O is the system barycenter
position. Denote the synodic frame by S : {O, iS, jS,kS} with iS coincident with the line uniting the two
primaries (positive towards the second primary), kS parallel to the system kinetic momentum and jS
closing the right-handed system, see Fig.1. Then, the CRTBP dynamics, in frame S, is

r̈+2ωωω × ṙ+ωωω × (ωωω × r) =−µ1
r− r1

||r− r1||32
−µ2

r− r2

||r− r2||32
, (1)

where r = [x,y,z]T is the spacecraft position, r1 = [−µD,0,0]T is the first primary position, r2 = [(1−
µ)D,0,0]T is the second primary position, ωωω = [0,0,

√
(µ1 +µ2)/D3]T is the angular velocity of the

synodic frame with respect to the inertial and µ = µ2/(µ1 +µ2) is the primaries mass-ratio parameter.

Fig. 1 Inertial and synodic frames of reference

2.2 Relative motion
Asssume a leader spacecraft and a follower with their positions given by rt and r, respectively. The

relative position between the vehicles is ρρρ = r− rt = [∆x,∆y,∆z]T . The relative dynamics is

ρ̈ρρ +2ωωω × ρ̇ρρ +ωωω × (ωωω ×ρρρ) =−µ1

(
ρρρ + r1t

||ρρρ + r1t ||32
− r1t

||r1t ||32

)
−µ2

(
ρρρ + r2t

||ρρρ + r2t ||32
− r2t

||r2t ||32

)
, (2)

where r1t = rt − r1, r2t = rt − r2 and the leader position evolution rt is assumed to be known.
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2.3 Linearized relative motion
In this work, close proximity operations are considered, hence ||r1t ||2, ||r2t ||2 ≫ ||ρρρ||2. This allows

the linearization of Eq. (2) considering

rit +ρρρ

||rit +ρρρ||32
≈ rit

r3
it
+

1
r3

it

(
I−3

ritrT
it

r2
it

)
ρρρ, i = 1,2, (3)

where the linearization point is ρρρ ≈ 0. Introducing the linearization of Eq. (3) into Eq. (2)

ρ̈̈ρ̈ρ =−
[
ΩΩΩ

2 +
µ1

r3
1t

(
I−3

r1trT
1t

r2
1t

)
+

µ2

r3
2t

(
I−3

r2trT
2t

r2
2t

)
.

]
ρρρ −2ΩΩΩρ̇̇ρ̇ρ, (4)

Note that the matrix ΩΩΩ denotes the cross product (algebraically) associated to ωωω and let also define the
matrix ΣΣΣ(t) which collects the linearized gravitational terms of Eq. (4)

ΩΩΩ =

0 −ω 0
ω 0 0
0 0 0

 , ΣΣΣ(t) =−µ1

r3
1t

(
I−3

r1trT
1t

r2
1t

)
− µ2

r3
2t

(
I−3

r2trT
2t

r2
2t

)
, (5)

then, the linearized motion of Eq. (4) can be stated as a LTV system as follows[
ρ̇ρρ

ρ̈ρρ

]
=

[
0 I

−ΩΩΩ2 +ΣΣΣ(t) −2ΩΩΩ

][
ρρρ

ρ̇ρρ

]
, (6)

.

3 Propagation models
The leader lies in a CRTBP periodic orbit (numerically computed) around an equilibria (see Fig. 2).

This causes the matrix ΣΣΣ(t) to be time dependant, hence the system evolution as per Eq. (6) is LTV and
not easy to solve. In this section, two propagation models are presented. The first one relies on numerical

Fig. 2 Illustration of Southern L2 Halos in the Earth-Moon system.

integration to obtain the state transition matrix. The second one considers the target position as constant
during a small propagation interval which allows to express the solution in terms of the state matrix
eigendecomposition.
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3.1 STM integration
Let define the relative state as x = [ρρρT ,ρ̇ρρT ]T , then Eq. (6) is of the form ẋ(t) = A(t)x(t). The

solution to the previous system can be expressed as x(t) =ΦΦΦ(t, t0)x0 where ΦΦΦ(t, t0) is the state transition
matrix from t0 to t which evolves as

Φ̇ΦΦ(t, t0) = A(t)ΦΦΦ(t, t0), ΦΦΦ(t0, t0) = I. (7)

Note that Eq. (7) is a first order ODE composed of 36 equations.

3.2 Zero-order hold approach
An alternative approach to propagate Eq. (6) consists in assuming the target position as constant rt

during a small interval of duration ∆T . Then, the matrix A becomes time-invariant, along ∆T :

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ω2 + cxx cxy cxz 0 2ω 0
cxy ω2 + cyy cyz −2ω 0 0
cxz cyz czz 0 0 0


, (8)

where the coefficients cxx,cyy,czz,cxy,cxz,cyz ≡ f (rt). In general, a coupling arises between xy and z.
This coupling only vanishes for rt along the x axis, e.g. collinear equilibria. Then, the solution to the
system ẋ(t) = Ax(t) can be expressed in terms of the A eigendecomposition

x(t) =
6

∑
j=1

d jeλ j(t−t0)v j, (9)

where λ j are the eigenvalues, v j the eigenvectors and d j the integration constants. It can be demonstrated
that the eigenvalues structure along a halo orbit yields two pure real eigenvalues (λ1,λ2 ∈ R) and two
pure imaginary pairs (λ3 = n1i, λ4 = n2i, λ5 = λ 3, λ6 = λ 4, n1,n2 ∈ R) as it will be shown in Fig. 5. As
a consequence, Eq. (9) can be expanded as

x(t) =d1v1eλ1∆t +d2v2eλ2∆t +d3(v3 cos(n1∆t)−v4 sin(n1∆t))+d4(v4 cos(n1∆t)+v3 sin(n1∆t))
+d5(v5 cos(n2∆t)−v6 sin(n2∆t))+d6(v6 cos(n2∆t)+v5 sin(n2∆t)),

(10)

where λ1,n1,n2 > 0, λ2 < 0 and ∆t = t − t0. Note that the unstable behaviour is associated to d1.

4 Impulsive hovering phase
The aim of this section is to present the hovering control problem and a numerical method to solve it.

The control action is considered as impulsive which models with adequate accuracy a chemical thruster.
When an impulse is applied the state changes instantaneously as

x+(t) = x(t)+B∆V(t), (11)

where the superscript + represents the state after the impulse, ∆V = [∆Vx,∆Vy,∆Vz]
T is the applied im-

pulse and the control matrix is given by B = [0,I]T .
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4.1 Problem statement
The objective of the hovering phase is to maintain the follower vehicle within a prescribed space

subset. This hovering region can be described, without loss of generality, by a cuboid

∆x ≤ ∆x(t)≤ ∆x, ∆y ≤ ∆y(t)≤ ∆y, ∆z ≤ ∆z(t)≤ ∆z. (12)

The hovering problem is stated as

min
x(t),∆V(t)

∫ t f

t0
||∆V(t)||1dt,

s.t. ẋ(t) = A(t)x(t),
x+(t) = x(t)+B∆V(t),
Ahovx(t)≤ bhov,

−∆V ≤ ∆V(t)≤ ∆V,

x(t0) = x0,

(13)

where Ahov ∈ R6×6 and bhov ∈ R6 define the hovering region constraints of Eq. (12). Problem (13) has
infinite degrees of freedom since the impulses can be placed anywhere.

4.2 Static program
The continuous optimization problem (13) is converted to a finite tractable static program by means

of discretization. Assume N impulses, ∆Vk, equispaced along the hovering phase at times tk = t0 +
(k− 1)∆t with ∆t = (t f − t0)/N. Thus, the impulses take place at the beginning of the intervals. Us-
ing the zero-order hold approach given by Eq. (10) and updating the constant matrix A for each in-
terval between impulses, the state propagation depends on the integration constants of each interval
dk = [dk,1,dk,2,dk,3,dk,4,dk,5,dk,6]

T , which needs to be updated to enforce position and velocity con-
tinuity between sucessive intervals (similar to a multiple shooting method). Moreover, the hovering
constraints are enforced at Nhov instants for each interval k (the enforcement period is ∆thov = ∆t/Nhov).

Following Ref. [18], a compact formulation is employed. Define the following stack vectors

dS =
[
dT

1 . . . dT
N

]T
, ∆VS =

[
∆VT

1 . . . ∆VT
N

]T
, (14)

xS =
[
x1,1 . . . x1,Nhov . . . . . . xN,Nhov

]T
, (15)

and the following stack matrix

G =



g1,1 0 . . . 0
...

... . . . ...
g1,Nhov 0 . . . 0

0 g2,1 . . . 0
...

... . . . ...
0 g2,Nhov . . . 0
0 0 . . . gN,1
...

... . . . ...
0 0 . . . gN,Nhov



, (16)
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where

gk, j =



vT
k,1eλk,1∆t j

vT
k,2eλk,2∆t j

vT
k,3 cos(ωk,1∆t j)−vT

k,4 sin(ωk,1∆t j)

vT
k,4 cos(ωk,1∆t j)+vT

k,3 sin(ωk,1∆t j)

vT
k,5 cos(ωk,2∆t j)−vT

k,6 sin(ωk,2∆t j)

vT
k,6 cos(ωk,2∆t j)+vT

k,5 sin(ωk,2∆t j)



T

, (17)

with k = 1 . . .N, j = 1 . . .Nhov and ∆t j = j∆thov. The state propagation can be expressed as

xS = GdS. (18)

An idea to maintain the follower orbiting around the leader could be to cancel the unstable mode associ-
ated to d1 as it is done under Keplerian assumptions (see Ref. [11]). Note that Eq. (18) does not guarantee
position/velocity continuity between adjacent intervals k. The optimization problem (13) becomes

min
dS,∆VS

||∆VS||1,

s.t. AS,hovGdS ≤ bS,hov,

(AS,x+ −AS,x−)GdS = BS∆VS,

Ax0GdS +Bx0∆VS = x0,

Ad1dS = 0,
−∆VS ≤ ∆VS ≤ ∆VS,

(19)

where AS,hov ∈R6NhovN×6NhovN , bS,hov ∈R6NhovN stack the hovering region matrix and vector inequalities.
The position and velocity continuity (update of the dk parameters) between adjacent intervals is imposed
with the aid of the matrices AS,x+ ∈ R6(N−1)×6NhovN and AS,x− ∈ R6(N−1)×6NhovN which extract the state
before, x−, and after, x+, an impulse ∆V is applied and the solution parameters changes. The matrix
Ad1 assures cancellation of the unstable mode (dk,1 = 0) each time an impulse is applied. The compact
optimization problem (19) can be easily recasted to an LP form by doing ∆VS = ∆VS

+−∆VS
−, ∆VS

+ ≥
0 and ∆VS

− ≥ 0.

5 Numerical results
In this section, a practical case with a target located in an Earth-Moon L2 southern NRHO is con-

sidered. This orbit (see Fig. (2)) is the same as the one employed in Ref. [9] and has a period of
Torb = 10.35 days, a stability index of ν = 1.0120 and a perilune of 17411 km. The Earth-Moon system
parameters are D = 384400 km, µ1 = 398600.4 km3/s2 and µ2 = 4904.869 km3/s2. The time variable
is changed to the phase angle (see Ref. [6]) as θ = 2πt/Torb. The origin of the angle (θ = 0) is the orbit
perilune.

All the simulations are done in MATLAB, with an i7-8700 3.2 GHz CPU, using both the non-linear
CRTBP dynamics (see Eq. (1)) for the leader and the relative dynamics of Eq. (2) for the follower.

5.1 Propagation accuracy
Three linear propagation models are tested to assess their accuracy and numerical efficiency. The

first one is based on the STM integration of Section 3.1. The others are based on the zero-order hold
approach of Section 3.2 updating the target position at {θk−1} for ZOH1 and at {θk−1+∆θ/2} for ZOH2
(being now ∆θ the propagation interval duration).
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Table 1 Root mean square position error along the trajectory for perilune flyby.

Root mean square position error Maximum position error
N ZOH1 (m) ZOH2 (m) STM (m) ZOH1 (m) ZOH2 (m) STM (m)
1 317.24 1154.1 10.6724 780.09 3009.2 31.2048

10 44.6544 13.4254 10.6365 76.9642 38.4054 31.2048
40 14.8802 10.8125 10.6372 33.1108 31.6636 31.2048

100 11.1679 10.6651 10.6374 30.4394 31.2773 31.2048

Table 2 Propagation computation times for perilune flyby.

N ZOH1 (ms) ZOH2 (ms) STM (ms)
1 4.1887 3.9015 775.17

10 7.8484 7.7000 817.16
40 15.6072 15.0981 864.01

100 27.7053 26.8562 1181.2

Two metrics are employed to effectively measure the propagation models accuracy. The first one is
based on the root mean square error

RMSρρρ =

√
1

θ f −θ0

∫
θ f

θ0

||ρρρ −ρρρNL||22dθ , (20)

where NL stands for non-linear model. The second indicator is the maximum position error as

maxerrρρρ = max(||ρρρ −ρρρNL||22). (21)

5.1.1 Perilune flyby
Firstly, let evaluate a natural relative trajectory in the perilune region with {θ0 = −17.5◦,θ f =

17.5◦}, which roughly accounts for one day of propagation, and x0 = [400,300,100,0,0,0]T m. The
parameter under study is the number of zero-order hold intervals along the trajectory N (in the case of
the STM model is the number of initial conditions updates). Table 1 shows the RMS position error
and maximum error, with respect to N, for each considered model. As more updates are done, the
accuracy of each method improves. The STM model shows no significant improvement as its initial
condition is updated more (this is logical since ΦΦΦ(t2, t0) =ΦΦΦ(t2, t1)ΦΦΦ(t1, t0)). However, ZOH1 and ZOH2
models improve their accuracy significantly until stalling. In all cases, ZOH2 provides a better accuracy
than ZOH1. Note that the zero-order hold method yields a similar performance to the STM one for
N ≥ 40. Table 2 provides the computation time for each method. As expected, the computational
burden augments as the discretization N increases. However, for the highest N, the ZOH1 and ZOH2
methods reduce the computational time by two orders of magnitude with respect to the STM model.
The trajectory projection on the ∆x∆y plane is shown in Fig. 3 for N = 40 (note that ZOH2 and STM
trajectories practically coincide).
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Fig. 3 Trajectories in the ∆x∆y plane for perilune flyby with N = 40.

Table 3 Root mean square position error along the trajectory for apolune flyby.

Root mean square position error Maximum position error
N ZOH1 (m) ZOH2 (m) STM (m) ZOH1 (m) ZOH2 (m) STM (m)
1 0.8317 0.6631 0.0018 2.1970 1.0983 0.0042

10 0.1405 0.0075 0.0023 0.3175 0.0142 0.0058
40 0.0357 0.0025 0.0024 0.0811 0.0073 0.0069

100 0.0141 0.0024 0.0024 0.0326 0.0072 0.0071

5.1.2 Apolune flyby
Now, evaluate a natural trajectory in the vicinity of the apolune with {θ0 = 162.5◦,θ f = 197.5◦}

and x0 = [400,300,100,0,0,0]T m. Table 3 shows the evolution of the RMS position error and the
maximum error, with respect to N, for each considered model. Similar conclusions to the perilune case
yield. However, note that the accuracies are far better when compared to perilune (see Table 1). This is
caused by a faster dynamics behaviour near the perilune compared to the apolune. Table 4 provides the
computation time for each method. The zero-order hold method is again more efficient computationally
than the state transition matrix computation. The trajectory projection in the ∆x∆y plane is shown in
Fig. 4 for N = 40 (note that all the trajectories coincide at practical effects).

5.1.3 Dynamics along the NRHO
The pure part of the state matrix A eigenvalues along the NRHO are represented in Fig. 5(a) (real

part) and Fig. 5(b) (imaginary part) respectively. The previously mentioned stable-unstable and os-

Table 4 Propagation computation times for apolune flyby.

N ZOH1 (ms) ZOH2 (ms) STM (ms)
1 3.5343 3.3629 122.742

10 8.1387 7.4960 162.545
40 18.6072 18.1182 360.275

100 30.5167 30.7559 750.243
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Fig. 4 Trajectories in the ∆x∆y plane for apolune flyby with N = 40.

cillatory behaviour (see Eq. (10)) is demonstrated. Moreover, the highest unstable mode and natural
frequencies arise at the perilune (this explains its faster dynamics).

0 100 200 300
-5
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5
10
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(a)

0 100 200 300
0

1

2

3

4
10

-5

(b)

Fig. 5 Real part of pure real state matrix eigenvalues along the NRHO (a); imaginary part of pure imagi-
nary state matrix eigenvalues along the NRHO (b).

5.2 Hovering phase control
Now, the ZOH2 propagation model is employed to impulsively control a hovering phase. The cuboid

is defined as {∆x = −400,∆x = 400,∆y = 200,∆y = 400,∆z = −300,∆z = 300} m and the impulse
amplitude limited by ∆V = [2,2,2]T cm/s. The follower is assumed to depart within the hovering zone
with ρρρ0 = [0,300,0]T m and ρ̇ρρ0 = 0 m/s. The target is initially placed at the perilune, θ0 = 0. The
controller parameters are chosen as N = 40 and Nhov = 4 with a control horizon of θ f ,k − θ0,k = 36◦.
At the end of each propagation interval, ∆t, the control sequence is updated by solving the LP problem
of (19). The simulation lasts for ten leader orbital periods (103.5 days). Figure 6(a) shows the relative
trajectory for the hovering phase demonstrating the effectiveness of algorithm. The follower remains
within the hovering region the 96.68% of time (the maximum constraint violation is of 1.5366 m) which
is caused by the linear control model and the discrete constraints enforcement. Figure 6(b) shows the
applied impulses along the trajectory. The total mission cost is of 3.7785 m/s. A strong correlation
between the control effort and the perilune region can be observed. This is logical since Fig. 5 has
demonstrated the faster dynamics behaviour at perilune. The control sequence computation time takes
in average 0.0636 s with a peak of 0.1583 s.
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Fig. 6 Hovering phase trajectory (a); velocity increments (b).

6 Conclusions
A novel propagation method for the CRTBP relative dynamics has been presented. This technique is

based on assuming the system as LTI for the propagation horizon and obtaining the solution in terms of
the state matrix eigendecomposition. When compared to the alternate approach of computing the STM
through numerical integration, the proposed approach provides a higher computational efficiency with
almost the same accuracy.

Additionally, the zero-order hold method has been employed to solve the spacecraft rendezvous
hovering phase in the context of the CRTBP. By studying the linear solution structure, the control strategy
aims at cancelling the unstable mode. However, the constraints are enforced in a discrete way which does
not guarantee its satisfaction between enforcement times. Future work may include the use of polynomial
positiveness techniques (see Ref. [19]) to assure constraints satisfaction in a continuous way.
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