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INVESTIGATING THE FUSION OF MASCON AND NEURAL
NETWORKS GRAVITY MODELS

Julio C. Sanchez* and John R. Martin†

Accurate gravity field modeling for irregular and heterogeneous density bodies,
such as asteroids, presents significant challenges. The inhomogeneous gravity
field plays a crucial role in spacecraft dynamics, particularly when orbiting in
low-to-medium altitudes around these bodies. To achieve a precise gravity field
solution, this paper explores the fusion of mascon and physics-informed neural
network (PINN) gravity models. The mascon model is a classical approach that
discretizes the body into a finite number of mass elements. Conversely, the PINN
model uses a deep neural network to map position coordinates into a gravitational
potential, and an acceleration can be evaluated via auto-differentiation of the net-
work. This work trains the mascon-PINN model in two stages using a position-
gravity dataset. In the first stage, only the mascon distribution is regressed and
then is held constant during the subsequent stage. In the second stage, the re-
gressed mascon model is combined with a weighted PINN, where only the neural
network is trained to refine the gravity solution. The mascon-PINN model effec-
tively merges the mascon stability at high altitudes with the high accuracy of the
PINNs at low altitudes. The performance of the mascon-PINN model is evaluated
using test cases for the asteroid 433 Eros, with a focus on orbital applications.

INTRODUCTION

Asteroids, small rocky bodies orbiting the Sun, are known for their irregular shapes and non-
uniform internal density distributions. These characteristics pose a significant challenge when at-
tempting to accurately resolve a global gravity model within their vicinity. This issue is relevant
across various mission phases, particularly when the spacecraft must operate at low altitudes where
non-Keplerian gravity perturbations are most significant. It is widely acknowledged that in these
gravity-dominated regimes, careful attention must be paid to the gravity field as the complex dy-
namics can place the spacecraft on escape trajectories or collisions paths with the body.1 Hence,
precise gravity modeling is required to ensure safe mission operations. Additionally, gravity mod-
els designed for on-board deployment to enhance spacecraft autonomy must be computationally
lightweight and memory efficient.

The most fundamental method to evaluate gravity involves integrating the gravitational pull of
each infinitesimal volume element of a body. However, this approach is seldom used in practice
due to the typically unknown internal density distribution of the body. Traditionally, astrodynamics
practitioners have modeled gravity using a spherical harmonics series expansion,2 which efficiently
encodes spatial variations in the gravity field, especially over long wavelengths. Nevertheless, spher-
ical harmonics have a significant drawback: the divergence within the body’s circumscribing sphere,
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a problem that becomes pronounced for elongated or irregularly shaped bodies like asteroids. A
widely adopted alternative is the polyhedral model,3 which avoids divergence in this regime and
better captures the dynamics induced by these irregular geometries. However, this model assumes
constant density, which may not be valid, and requires iterating over all polyhedron edges and faces,
leading to computational burdens for high-fidelity models.

Discretized approaches, such as mascon (mass concentrations) models, offer a potential remedy.
Initially developed to model large mass anomalies of the Moon,4 mascon models aggregate the
gravitational contributions of distributed, discretized mass volumes — often represented as point
masses. These mass distributions can be prescribed, such as arranging layers of point masses at
the centroids of discretized elements,5 or regressed to best match an available dataset.6–10 Notably,
solving the non-linear optimization of point mass placement significantly impacts accuracy,7–9 par-
ticularly with a low number of masses (< 500). Moreover, even when careful attention is paid to the
regression, mascon models may place point-masses near the surface which introduce large errors
near it. To minimize the impact of these errors and continue learning intricate gravity patterns, this
study turns to scientific machine learning to offer a potential remedy.

Machine learning has revolutionized multiple fields within science and engineering during the last
decade. As it relates to gravity modeling, multiple efforts have emerged to leverage scientific ma-
chine learning. At a high-level these efforts seek to regress a mapping between position and acceler-
ation using tools like extreme learning machines,11 traditional neural networks,12 physics-informed
neural networks,13 and even neural density fields.14 Of these models, one of the matured approaches
is the use of physics-informed neural networks (PINNs)15 which provide a powerful framework to
model solutions of complex differential equations from data alone. Martin and Schaub13, 16, 17 have
leveraged PINNs to solve the gravity modeling in small-body environments, most recently having
introduced their third generation PINN gravity model (PINN-GM-III).13 This latest model intro-
duces a variety of modifications to maximize modeling accuracy and reliability. One particular
modification of note is the PINN-GM-III’s ability to seamlessly fuse the neural gravity model with
an analytic point-mass model. This fusion guarantees that the hybrid model maintains reliability
even beyond the bounds of the training set by ensuring a smooth transition to a reliable gravity
model when the network grows uncertain due to the absence of data.

The present study aims to further develop the concept of fusing neural gravity representations
with analytic models, but instead focuses attention on the use of mascon gravity models. In compar-
ison to the single point-mass model utilized in Ref. 13, a regressed mascon model offers a precise
initial approximation of the asteroid’s gravity field. This diminishes the neural network’s burden
of learning well-established behaviors through analytic models thus allowing the PINN to focus
on deciphering the complex patterns of the gravity field. For instance, lightweight mascon models
(< 500 masses) are able to maintain accuracy within the Brillouin sphere until very close to the
surface but struggle to grasp complex behaviours even if they are regressed with abundant data.
Hence, it proves beneficial to enhance the regressed mascon with a PINN that introduces additional
basis functions able to approximate the remaining intricate patterns. The mascon-PINN setup uses
the principle of superposition found in the PINN-GM-III model in Ref. 13. In particular, the present
work expresses the gravitational potential U = UM + wNNUNN where wNN is a weight function,
dependent on the orbital radius, which smoothly deactivates the neural network’s contribution. Dif-
ferently from Ref. 13, where a second weight deactivates the analytic contribution at low altitudes,
the previous approach allows to independently consider the mascon and PINN contributions.

Besides accuracy, one of the main concerns for astrodynamics practitioners is the ease of use of
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Figure 1. Fusing analytic and numerical gravity models yields superior performance.

gravity models. Traditional models like spherical harmonics, mascon, and polyhedron are widely
used because their implementation is well-established, are included in most astrodynamics frame-
works, and can be fused with or transformed into one another. To demonstrate that the mascon-
PINN model also offers seamless integration and usability, we have incorporated it into the Basilisk‡

(BSK) astrodynamics simulation framework.18 Due to our choice of the gravitational potential form,
the PINN model can be easily superposed to the mascon model in the BSK framework. Currently,
the PINN is loaded into Basilisk via a previously generated PyTorch file, which stores a Python
object with methods to evaluate the gravitational potential and acceleration. The simulations in this
paper are conducted using this tool.

The structure of this manuscript is as follows: First, an overview of existing gravity models is
presented. Next, the fused mascon-PINN gravity model is introduced. Following this, the training
process of the mascon-PINN model is detailed. To assess the effectiveness of the mascon-PINN
model, a high-fidelity asteroid ground truth model is defined. The numerical results include direct
evaluations of gravity field accuracy, computational efficiency and a set of orbital application tests.
Finally, the manuscript concludes with a discussion of conclusions and future work.

‡https://hanspeterschaub.info/basilisk/
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GRAVITY MODELS

By assuming the body’s shape and density distribution are stationary, the gravitational accelera-
tion, a, on an exterior evaluation point, r, can be expressed as

a = −G
∫
V
ρ

r− rV
∥r− rV ∥3

dV (1)

where G is the gravitational constant, V is the body’s volume, ρ refers to the density field and rV
evaluates each point within V . Although Eq. (1) is the most fundamental gravity description, the
body’s internal density field ρ(rV ) is usually not available in practice. Moreover, the evaluation of
a volume integral is computationally cumbersome which may preclude on-board execution. Due to
the previous facts, alternate gravity models based on certain simplifying assumptions are preferred
in astrodynamics. Some of these models, such as polyhedron, mascon, and neural network models,
are used throughout this work and are described below. For the sake of brevity, the popular spherical
harmonics model is omitted in the discussion as it is not used along this paper.

Polyhedron gravity

The polyhedron gravity model is conceived in Ref. 3 to be an accurate model for small bodies.
It assumes the body has a constant density and its shape is that of a polyhedron. Then, the exterior
gravity evaluation resorts to the following formula

a =
µ

V

− ∑
e∈edges

Ee · reLe +
∑

f∈faces

Ffrfwf

 (2)

where µ is the body standard gravity parameter, V is the body volume, re is the relative position of
the evaluation point with respect to the origin of an edge, Ee is the dyad product resulting from an
edge and its face normal, Le is the 1D wire gravity potential of an edge, rf is the relative position
of the evaluation point with respect to a vertex on a face, Ff is the outer product of the face normal
vector and wf is the solid angle of the face as viewed from the evaluation point. The explicit details
of these terms can be consulted in Ref. 3. The constant density can be easily obtained as ρ = µG/V .

An evident drawback of the polyhedron model is its constant density assumption, which reduces
accuracy for bodies with heterogeneous density distributions. Another weakness is the need to iter-
ate through all edges and faces of the polyhedron for gravity evaluation, making it computationally
intensive when high-resolution shape models are used. In addition to gravity, the polyhedron also
represents a shape model, providing formulas to compute volume and determine whether a point is
within the polyhedron, as detailed in Ref. 3. These features are useful for validation purposes.

Mascon gravity

The mascon model was introduced in the 1970s as an alternative to spherical harmonics, designed
to fit sparse data and represent large mass anomalies.4 It describes the gravity field by summing
the individual contributions of a finite number of volume elements, known as mascons, effectively
resembling a discretized version of Eq. (1). For simplicity, mascons are typically modeled as point
masses thus the mascon gravity is expressed as

a = −
nM∑
k=0

µk
r− rk
∥r− rk∥3

(3)
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where µk and rk are, respectively, the standard gravity parameter and position of each point mass.
The number of point masses is nM + 1. The mascon model avoids spherical harmonics Brillouin
sphere divergence which makes it suitable for small bodies. Nonetheless, large errors may arise
when point-masses are placed near the surface.

Neural network gravity

Recently neural networks have been proposed to represent gravity fields. The first efforts11, 12 on
the matter proposed to directly describe the acceleration field as

a = fNN(r) (4)

where fNN is an artificial neural network which maps position coordinates to gravity. Additional
research by Martin and Schaub16, 17 proposed to incorporate physics knowledge into the network
design through the use of Physics-Informed Neural Networks, or PINNs. These authors use the
neural network to represent the gravity potential, rather than the acceleration field, and differentiate
it via automatic differentiation to obtain the acceleration field as

a = ∇UNN(r) (5)

By learning the gravity potential, the network is demonstrated to be more accurate at generalizing
samples outside the dataset and requires fewer network parameters than competing alternatives. The
initial gravity PINN versions, named PINN-GM-I16 and PINN-GM-II,17 learn a differentiable form
of the potential along with a penalty term for the Laplacian. While these versions are very accurate
within the training dataset region, they are unreliable in areas without data. The new PINN-GM-
III13 addresses this issue by fusing an analytic model with the PINN, smoothly transitioning from a
neural network solution to a point mass approximation as the model extends into domains lacking
data, thereby forming a global gravity solution. This ensures that the gravity solution satisfies
important boundary conditions, although the choice of a point mass approximation in the limit
remains sub-optimal. This strategy is further detailed in the next section, as it is the foundational
concept behind the proposed mascon-PINN model.

FUSION OF MASCON AND NEURAL NETWORK GRAVITY

The main contribution of this work is the fusion of mascon and neural network gravity models to
obtain a global gravity solution. The idea is to use a previously regressed mascon model to be further
refined by a neural network. The mascon model ensures an accurate starting point for the neural
network training which can effectively focus its computational power on approximating the very
complex gravity field features. The fusion strategy extensively leverages the law of superposition:
the fact that multiple potentials can be added together to yield a global potential.

In Ref. 13, the law of superposition is exploited to add extrapolation robustness to the gravity
PINN. They introduce a boundary potential UBC that smoothly contributes fully to the gravity past
a certain altitude. This strategy deactivates the PINN in the dataless areas thus avoiding unreliable
results at high altitudes. Reference 13 uses a weighted potential between the boundary model and
the PINN as

U(r) = wBC(r)UBC(r) + wNN(r)UNN(r) (6)
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The weights wBC and wNN only depend on the radial coordinate r = ∥r∥. To deactivate the PINN
when r →∞, Ref. 13 proposes an hyperbolic tangent function as

wNN(r) = 1−H(r), H(r) =
1 + tanh(K(r − rref ))

2
(7)

where rref places the zero-crossing of the hyperbolic tangent and K controls the smoothness of the
transition from activation to deactivation.

The weight wBC to the boundary model is a topic on its own. When the boundary model is
unreliable at low altitudes (e.g. point-mass or spherical harmonics) it could be convenient to force
its deactivation as wBC = H(r). This also admits further refinement as it is explored in Ref. 13
which adds an additional deactivation term to the point-mass model. However, this paper uses the
mascon model which is fairly accurate within the Brillouin sphere though it may introduce large
errors near the surface. Accordingly we choose wBC = 1 to maintain the base mascon model as
it is thus ensuring a seamlessly addition of its contribution to the total gravity. Then, the fused
mascon-neural network gravity potential is

U(r) =

nM∑
k=0

µk

∥r− rk∥
+ (1−H(r))UNN(r) (8)

and the gravity evaluation is

â(r) = −
nM∑
k=0

µk
r− rk
∥r− rk∥3︸ ︷︷ ︸

mascon contribution

+∇[(1−H(r))UNN(r)]︸ ︷︷ ︸
PINN contribution

(9)

TRAINING OF THE MASCON-PINN MODEL

The training of the fused mascon-PINN model comprises two separate stages. First, the mascon
model is regressed and its parameters are kept constant. Second, a neural network is attached to the
mascon model following Eq. (8)-(9) and the network weights and biases are learned through train-
ing. In these processes, the main assumption is that a dataset of n position and gravity acceleration
samples is available as

rdata =

r1...
rn

 , adata =

a(r1)...
a(rn)

 (10)

Mascon regression

The mascon regression aims to determine the point-mass mascon distribution, characterized by
masses values µk and planetocentric positions rk = [xk, yk, zk]

T with k = 0 . . . nM , that best fits
the dataset in Eq. (10). For the sake of brevity. the term mass is extensively used to denote the
standard gravity parameter in the context of the mascon model. The mascon parameters arise in the
mascon gravity evaluation as per Eq. (3). Following Ref. 9 the mascon distribution is regressed by
means of gradient descent with the enforcement of physical constraints. This means that masses are
required to be positive and within the body’s shape. Since gradient descent is to be used, an initial
mascon distribution is required to start with.
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One of the main assumptions to the mascon regression is the availability of a shape model with
an expression to check if masses are within the body’s shape. In that sense, the polyhedron model
of Ref. 3 provides the following conditions for a point to be exterior or interior

r ∈ V if
∑

f∈faces
wf (r) = 0

r /∈ V if
∑

f∈faces
wf (r) = 4π

(11)

where wf is the solid angle of each face as seen by the evaluation point. The Eq. (11) is used
throughout this paper to discriminate interior and exterior points to the asteroid.

Initial distribution: An initial mascon distribution µ
[0]
k and r

[0]
k is required to start the regression

process. Each mass is initialized with the same value µ
[0]
k = µ/(nM + 1). Their positions are

distributed randomly while ensuring a certain level of sparsity between them as follows: the 0th
mass point is placed at the origin, r[0]0 = 0, by default; the rest of the nM masses are divided
equally within the eight octants of the body’s shape (please refer to Ref. 9 for more details). Note
that at most there is a difference of one point mass between the octants if nM is not divisible by
eight. For each octant, the masses positions are random and are ensured to be within the body’s
shape r

[0]
k ∈ V .

Physical constraints: When using data regression to find the optimal mascon distribution, the
physical consistency of the solution is not directly ensured. In particular we desire a distribution
with positive masses, µk ≥ 0, and positions contained within the body shape rk ∈ V . To reduce the

number of multiple solutions, the total mass is also enforced as
nM∑
k=0

µk = µ.

To force all masses to be positive, the decision variable µk can be transformed to its square-root
as
√
µk. The total mass compliance can be directly encoded by expressing the 0th mass as a function

of the remaining nM ones

µ0 = µ−
nM∑
k=1

µk (12)

Still the 0th mass can undergo a negative value. A mitigation could be to track the 0th mass during
training and decrease the remaining nM masses in the same proportion if the 0th mass becomes
negative

If µ0 < 0 then µk ← µk
µ

nM∑
k=1

µk

(13)

Ensuring all masses are within the body’s shape follows the same previous logic of the 0th mass.
This technique is well known in optimization and consists in projecting the actual unfeasible so-
lution to the closest point within the feasible set. In order to keep masses contained to the body’s
shape we can detect if one goes outside of it with Eq. (11) and project that mass to the closest point
in the polyhedron surface ∂V as

If rk /∈ V then rk ← arg min
r∈∂V

∥r− rk∥ (14)
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Gradient descent: The mascon regression algorithm uses Adam gradient descent to find the
mascon distribution (µk, rk) for k = 1 . . . nM that best fits a loss function based on the dataset
of Eq. (10). To design the loss function, absolute, δaABS, and relative, δaREL, errors are defined as

δaABS,j = ∥â(rj)− aj∥, δaREL,j =
∥â(rj)− aj∥
∥aj∥

(15)

where â(rj) is the model gravity prediction and aj is the truth value. Relative errors are especially
useful for validation as one would like to know the prediction accuracy regardless of the absolute
value. One could just use relative errors to design the loss but it is also convenient to introduce some
prioritization for large gravity values. Consequently, we consider the following mean squared error
(MSE) loss function to train the mascon distribution

LMSE =
1

n

n∑
j=1

(
δa2REL,j +

δa2ABS,j

ā2

)
(16)

where ā is a normalization factor to have similar order of magnitudes in the relative and absolute
terms. In this work, the variable ā is chosen as the maximum gravity acceleration of the entire
dataset.

The training decision variables are also normalized to avoid extreme numerical differences due
to unit dimensions. In particular, we normalize masses µk and their position coordinates rk =
[xk, yk, zk]

T as

µ̄k =
µk

µ̄
, x̄k =

xk
a
, ȳk =

yk
b
, z̄k =

zk
c

(17)

where µ̄ = µ/(nM +1) and (a, b, c) are the principal dimensions of the body’s ellipsoid approxima-
tion. This normalization is very convenient for elongated asteroids beause it scales each direction
according to its relative size.

Neural network training

Once the mascon distribution is regressed its parameters are fixed and a PINN model is attached
according to Eq. (8)-(9). The goal now is to train the neural network weights and biases with the
same dataset as per Eq. (10). For the neural network training this paper follows the fundamental
results of Martin and Schaub works related to gravity PINNs which explored impact of feature
engineering, network architectures and suitable loss functions on neural network gravity modeling
performance.13, 16, 17

Feature engineering: A neural network maps inputs, xNN, to outputs, yNN, as yNN = f(xNN).
Feature engineering processes raw inputs and outputs into a more effective set that boost neural
network training capabilities. For example, it is well-known that neural networks inputs-outputs
work well in the [−1, 1] interval where activation functions vary meaningfully. Therefore, it is
convenient that gravity PINN inputs-outputs are engineered to exist within that interval. Moreover,
it is often convenient to encode the inputs into features that strong correlate with variations in the
gravity field. To accomplish this, this work follows the PINN-GM-III feature engineering scheme
as detailed below.

The neural network input features are transformed from Cartesian coordinates (expressed in the
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planetocentric rotating frame) r = [x, y, z]T to network inputs xNN = [r̄i, r̄e, s, t, u]
T as

r̄i =

{ r

R
if r ∈ [0, R),

1 if r ∈ [R,∞),
r̄e =

1 if r ∈ [0, R),( r

R

)−1
if r ∈ [R,∞),

st
u

 =
1

r

xy
z

 (18)

where r =
√
x2 + y2 + z2 and R is the radius corresponding with the Brillouin sphere. Accord-

ingly, the features r̄i and r̄e capture the Brillouin sphere’s interior and exterior in a distinctive man-
ner, varying along the positive interval as r̄i ∈ [ min

r∈∂V
(∥r∥/R), 1] and r̄e ∈ (0, 1]. The features s, t

and u represent the sines of the evaluation point with respect to the Cartesian axes. These features
vary in the desired interval as s, t, u ∈ [−1, 1].

The network output feature yNN is a scalar also subject to engineering. Due to the prior mascon
regression, the PINN is trying to learn the gravity potential error (see Eq. (8)) between the mascon
and the ground truth model. In that scenario, test samples with equal relative errors could be subject
to a large difference in absolute terms due to the fact that U → 0 when r → ∞. To effectively
scale the network output and mitigate the potential decay with altitude, yNN is designed as a proxy
potential13 which can be converted to the true potential through

UNN =

(
R

r

)
(U∗) yNN (19)

The normalization is done with U∗ = max(|U−UM |) which represents the largest potential absolute
error of the mascon model UM to be corrected. The scaling with the radial distance R/r mitigates
the potential decay of U → 0 when r → ∞ and keeps the network learning gravity differences
(other than the point-mass contribution) at medium to high altitudes.

Fused mascon-PINN potential: During the mascon-PINN training, the neural network is for-
warded and auto differentiation is applied to obtain the gradient of the fused potential with respect
to input position coordinates. In that sense it is required to work with the following fused mascon-
PINN potential during training

U(r) =

nM∑
k=0

µk

∥r− rk∥
+ (1−H(r))UNN(r) (20)

where UNN is the physical network potential which relates to the network output as per Eq. (19). A
gravity prediction is done by autodifferentiating Eq. (20) as a(r) = ∇U(r). In evaluation mode,
only the PINN contribution is autodifferentiated since accounting for the mascon component with a
computational graph is slow when nM is large.

Network architecture: The recommended PINN architecture is that of a multilayer perceptron
with l hidden layers with m neurons per layer. We will use the notation l×m to compactly express
the capacity of the network. The number of network weights can be obtained as nw = ninm +
(l − 1)m2 + noutm and biases as nb = lm + nout where nin = 5 and nout = 1 in the case under
consideration. The total number of network parameters is nNN = nw + nb.

The activation function is another key component of a neural network. For a PINN, there is a
need to do a gradient operation to the network hence functions with non-constant derivatives are
required (e.g. ReLU is a bad choice). In this work, SIREN (sinusoidal activation) is used

yij = sin

 m∑
j=1

wijyi−1,j + bij

 (21)
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where the index i refers to the i-th hidden layer and j to the j-th neuron in the layer. Another choice
for a gravity PINN activation could be the GeLU (Gaussian error linear units) function.

Gradient descent: Like the mascon distribution, neural networks are also trained using gradient
descent to minimize some chosen loss function. For gravity PINNs, previous works13 have demon-
strated the effectiveness of a loss aiming mean absolute errors (MAE) instead of mean squared ones.
Then, the PINN loss is defined to minimize mean absolute and relative gravity errors as

LMAE =
1

n

n∑
j=1

(
δaREL,j +

δaABS,j

ā

)
(22)

Note that by their definition in Eq. (15), the relative and absolute gravity errors are always positive
as δaREL ≥ 0 and δaABS ≥ 0.

GROUND TRUTH GRAVITY

The chosen test case asteroid is 433 Eros which is an elongated shape object with abundant
data obtained by NEAR mission. The asteroid 433 Eros has a sidereal period of 5.27 h and a
standard gravity parameter of µ = 4.46275 ·105 m3/s2. Eros polyhedron shape models are publicly
available§. In particular, the high resolution model with 200,700 faces is used as ground truth
model in this paper. Eros ellipsoidal approximation can be roughly quantified as a = 16.342 km,
b = 8.410 km and c = 5.973 km. However, the normalization radius R = 16 km is widely used as
the Brillouin sphere boundary.

Two scenarios are studied in this manuscript. The first one corresponds to the usual constant
density polyhedron case. The second one adds two perturbing masses to the constant density poly-
hedron to create an asymmetry in the gravity field (namely heterogeneous polyhedron). One of the
masses is positive as +0.1µ and is placed at [10, 0, 0]T km while the remaining one is negative as
−0.1µ and is placed at [−10, 0, 0]T km. The gravity magnitude, acon = ∥a∥, in Eros equatorial
plane xy for each scenario is reported in the left panel of Fig. 2. The heterogeneous polyhedron rel-
ative difference, (ahet− acon)/acon, with respect to the constant density magnitude is also depicted
in the right panel of Fig. 2. It can be clearly observed that the constant density gravity level curves
tend to resemble Eros shape. The heterogeneous polyhedron breaks that pattern by decreasing the
gravity magnitude on Eros left-side and increasing it on the right-side as expected.

For each scenario under consideration, the training dataset consists of 100,000 samples randomly
distributed at altitudes between 0−50 km (0−3.125R). The test set can be generated independently
of the training one to evaluate regions of interest like the surface or high altitudes. Specifically, a
position-gravity test set of 61,246 samples ranging from the surface to 10R (160 km) is defined to
evaluate the exterior gravity field solution. An additional test set of 200,000 samples is defined on
the surface to assess the errors in the most challenging region to approximate.

NUMERICAL RESULTS

The numerical results assess the mascon-PINN gravity field solutions for both constant density
and heterogeneous polyhedron models of Eros. This section includes a direct evaluation of the
global gravity field accuracy and an analysis of the model’s performance in astrodynamics appli-
cations, such as orbital propagation and ballistic transfer design. Comparisons with standalone
mascon gravity models are provided throughout the section.

§https://sbnarchive.psi.edu/pds3/near/NEAR_A_5_COLLECTED_MODELS_V1_0/data/msi/
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Figure 2. Gravity magnitude in Eros equatorial plane for constant density poly-
hedron (left) and the relative difference induced by the heterogeneous polyhedron
(right).

Mascon PINN

Optimizer Adam Adam
Loss MSE MAE

Mini-batch size 10,000 2,000
Epochs 5,000 5,000

Learning rate 10−3 10−3

Activation function - SIREN

Initialization
µ
[0]
k ← µ/(nM + 1)

r
[0]
k ← random per octant

Xavier Glorot

Table 1. Mascon-PINN training hyperparameters.

The training hyperparameters of the mascon-PINN gravity model are reported in Table 1. The
PINN weight wNN (see Eq. (7)) parameters are chosen ad hoc as rref = 70 km and K = 1.
This is motivated by max(rdata) ≈ 67.5 km thus being convenient to deactivate the PINN beyond
that boundary. Finally, a unit value of K ensures a smooth deactivation of the PINN model hence
avoiding loss of accuracy by gradient explosion.

Global gravity accuracy

The mascon-PINN global gravity accuracy is analyzed for several number of model parameters.
Specifically the mascon number of masses is varied as nM = {8, 20, 50, 100, 1, 000} for a 6x40
SIREN PINN. Alternatively, the case where the mascon masses are kept fixed to nM = 100 and the
PINN neurons per layer varies as {10, 20, 40, 80, 160} is also studied.

Constant density polyhedron: The results for Eros constant density polyhedron are presented
in Fig. 3-5. Figures 3-4 show the evolution of average gravity error (at intervals of 0.1R) with
respect to altitude by varying the number of masses and neurons per layer respectively. In Figure
3, there is a clear correlation between increased accuracy (especially at low to medium altitudes,
0 − 3R) and a higher number of masses (nM ). Interestingly, the difference in accuracy becomes
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Figure 3. Average gravity error with respect to altitude of constant-density polyhe-
dron by varying the number of masses for a SIREN 6x40 network.

Figure 4. Average gravity error with respect to altitude of constant-density polyhe-
dron by varying the number of neurons for nM = 100.

less pronounced between 100 and 1,000 masses, with almost all models converging to the same
accuracy at altitudes over 6R. The mascon-PINN models have improved the global accuracy for all
studied cases, demonstrating that even the model with only 8 masses fused with the PINN SIREN
6x40 is as competitive as the heavy mascon model with 1,000 masses. Figure 4 also shows a
correlation between global accuracy and the number of neurons per layer. Even with a few neurons,
the PINN can learn features unseen by the mascon model. These figures reveal a transition period
around an altitude of approximately 4.5R, due to the weight wNN, characterized by rref = 70 km
(4.375R). Nonetheless, the errors in that region remain below than those of the standalone mascon
model.

Lastly, Fig. 5 shows the gravity error evaluated on the asteroid surface for a mascon model with
nM = 100 and its corresponding fused PINN with 6x40 SIREN layers and neurons. The latitude
(ϕ) and longitude (λ) are ellipsoidal and related to Cartesian coordinates as x = as cosλ cosϕ,
y = bs sinλ cosϕ, and z = cs sinϕ. The variable s represents ellipsoids of different size but equal
aspect ratio. The ellipsoidal bi-dimensional projection is not exact due to the asteroid irregular shape
but is less distorted than a spherical one. Going back to Fig. 5, it can be observed that the mascon-
PINN significantly reduces surface errors overall from 1.72% to 0.61% on average. However, the
mascon induces a large error of approximately 10%, which is difficult for the PINN to mitigate.
This may suggest that the choice of wBC = 1 in Eq. (6) should be revisited in the future.
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Figure 5. Gravity error on the surface (ellipsoidal coordinates) for the constant density polyhedron.

Heterogeneous polyhedron: The results for Eros heterogeneous polyhedron are shown in Fig. 6-
8. The accuracy trends with respect to the number of masses and neurons (see Fig. 6-7) are equiv-
alent to the constant density polyhedron. It is notable that this scenario is more challenging for
the mascon regression since the accuracy is lower with respect to the constant density polyhedron.
Specifically, as shown in Fig. 6, a distribution with at least 20 masses is required to converge to
the heavier mascon models at high altitudes. The PINN also shows a similar trend with the num-
ber of neurons as the 6×10 network barely improves the mascon regression as depicted in Fig. 8.
Nonetheless, an enough number of masses and neurons provides an accurate gravity representation
which validates the mascon-PINN model in a scenario other than the constant density polyhedron.

Finally, Fig. 8 shows the gravity error evaluated on the asteroid surface for a mascon-PINN and
its corresponding base mascon. Under the heterogeneous polyhedron scenario, large errors on the
surface remain as can be observed in Fig. 8 and also in Fig. 6 where the evaluated mascon models
usually present higher errrors at low altitudes than with constant density (see Fig. 3). Although
the PINN significantly reduces errors on the surface in Fig. 8, it struggles again to drive down the
largest error of ≈ 50% produced by the mascon model.

Computational efficiency: For its use on-board, a gravity model has to be lightweight and fast in
execution. Here the computational performance of polyhedron, mascon-PINN and mascon models
is analyzed. Light and heavy versions of each model are defined: for the polyhedron shapes with
7,790 and 200,700 faces, for the PINN 6 × 40 and 6 × 160 versions, and for the mascon 100 and
1,000 masses respectively. The computational times of single executions are shown in Table 2 for
1,000 samples. Both mascon models are very efficient and position themselves ≈ 100 times faster
than the light polyhedron version (7,790 faces).

The PINN contribution is evaluated detached from the mascon and is subject to further improve-
ment. The current evaluation of the PINN is sligthly slower, but in the same order of magnitude, than
the light polyhedron. While attempting to improve these results we have found hints that suggest
further performance can be squeezed out. For example, the execution speed seems to be insensitive
with respect to the network parameters: 8,481 (5 · 40 + (6 − 1) · 402 + 1 · 40 + 6 · 40 + 1) for
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Figure 6. Average gravity error with respect to altitude of heterogeneous polyhedron
by varying the number of masses for a SIREN 6x40 network.

Figure 7. Average gravity error with respect to altitude of heterogeneous polyhedron
by varying the number of neurons for nM = 100.

Figure 8. Gravity error on the surface for the heterogeneous polyhedron.
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Model Computation time [ms]

Poly. 200,700 faces 5.066
Poly. 7,790 faces 0.196

PINN 6×40 (BSK) 0.398
PINN 6×160 (BSK) 0.371

PINN 6×40 (JIT) 0.246
PINN 6×160 (JIT) 0.270
Mascon nM = 100 3.618 · 10−3

Mascon nM = 1, 000 1.425 · 10−2

Table 2. Average computational times of gravity models.

the 6 × 40 network and 129,921 for 6 × 160. It is suspected that some overhead, Pytorch’s C++
frontend communication with Python layer, are possibly shadowing the computational impact of
augmenting the network capacity. We have tested both the current Basilisk implementation, which
actually resorts to Python interpreter in C++, and PyTorch just-in-time (JIT) compilation and same
trends are found though JIT proves to enhance execution speed in a ≈ 40% as shown in Table 2.
We are optimistic that thorough research in the subject may place the PINN 6 × 40 computational
efficiency between the heavy mascon and the light polyhedron versions.

Astrodynamics applications

The utility and performance of the mascon-PINN model is tested on two astrodynamics applica-
tions. The first consists of an orbital propagation scenario, and the second is the design of a ballistic
transfer from orbit to a low altitude target point. In these two applications, the mascon-PINN model
prediction is assessed against the ground truth polyhedron models.

Orbital propagation: The orbits are propagated in an asteroid-centred inertial frame N with
only the inhomogeneous gravity field perturbation as

r̈N = (CP
N )Ta(CP

NrN ) (23)

where P is the asteroid-centred rotating frame and CP
N is the direction cosine matrix from N to P

frame which depends on the asteroid rotation. The asteroid is assumed to rotate uniformly, according
to its sidereal period, around the z axis. Note that the inhomogeneous gravity is evaluated in the P
frame. In this work, the trajectories are plotted in the P frame which provides relative positioning
with respect to the asteroid shape.

To validate numerical propagation, a total test set of 15 orbits is defined. The orbits initial
conditions vary the semi-major axis as a0 = {28, 34, 40} km and the orbital inclination as i0 =
{0◦, 45◦, 90◦, 135◦, 180◦}. The remaining initial orbital elements are arbitrarily set to e0 = 0, ω0 =
48.2◦,Ω0 = 347.8◦ and ν0 = 85.3◦. The 1-day propagation of the test orbits under Eros constant
density ground truth polyhedron is shown in Fig. 9. All of them exhibit stable behaviour except from
a equatorial one (blue) which evolves to a escape path. Although not shown for space constraints,
the heterogeneous polyhedron unstabilizes three orbits of the test set.

To evaluate the propagation accuracy, the root-mean square error along the trajectory is used as a
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Figure 9. Test orbits during 1-day propagation with constant density polyhedron model.

metric

RMSE =

√
1

T

∫ T

0
∥r− rtruth∥2dt (24)

where r is the orbital prediction of the estimated gravity model and rtruth is the one corresponding
to the ground truth polyhedron model. The RMSE results for several mascon and mascon-PINN
models are shown in Fig. 10-11 for Eros constant density and heterogeneous polyhedrons respec-
tively. It can be observed that the mascon-PINN model demonstrates enhanced orbital prediction
accuracy under all the test cases. Mascon-PINN models usually provide RMSE ≤ 1 m with few
exceptions corresponding to unstable equatorial orbits. Differently, mascon models usually provide
RMSE ≈ 10 m but raises to > 100 m for the most challenging cases. A notable mention should be
made to the mascon-PINN with nM = 1, 000 and 6 × 40 SIREN which is able to kept sub-meter
accuracy in all the test orbits.

Low altitude transfers: Here the fused mascon-PINN model is used to design ballistic transfers
to low altitudes. The problem is to find the initial velocity ṙ0 that transfers a spacecraft from r0 to
rf in a fixed time T . The following two point boundary value problem (TPBVP) is to be solved

Find ṙ0 subject to r(0) = r0, r(T ) = rf ,

r̈ = −2ωωω × ṙ−ωωω × (ωωω × r) + a(r)
(25)

where the variables are referred to the asteroid-centred rotating frame since geographical coordi-
nates are of interest. The term ωωω = [0, 0, ω]T is the asteroid sidereal rotation rate. The transfer
TPBVP is solved using SciPy solve bvp function by sequentially increasing the gravity model com-
plexity. First, the TPBVP Keplerian solution is found and is subsequently used as an initial guess

16



Figure 10. Root mean square error of 1-day orbital propagation for constant density
polyhedron with mascon and mascon-PINN of 6x40 SIREN.

Figure 11. Root mean square error of 1-day orbital propagation for heterogeneous
polyhedron with mascon and mascon-PINN of 6x40 SIREN.

for the mascon model transfer. Then, the mascon transfer is used as the initial guess to for the
mascon-PINN gravity TPBVP transfer. The approach is naive and we acknowledge that finding the
optimal transfer with collision avoidance has been left out of the scope of this work.

The chosen test transfers comprise two different scenarios: From an equatorial orbit to a point
close to Psyche crater, and from a polar orbit to a point near Eros north pole. The terminal points are
located at ≈ 200 m of altitude since targeting the surface requires a more sophisticated algorithm
with collision avoidance capabilities. The boundary conditions of the test transfers are detailed
in Table 3. For each initial orbit 40 points are sampled in terms of the true anomaly to create an
ample test set. Asteroid collisions are checked by evaluating the TPBVP solution. If a collision is
detected with any of the models (Kepler, mascon or mascon-PINN), the transfer is removed from
the analysis. The majority of the North pole transfers occur without collisions but only 11 of the
40 initial conditions for Psyche crater transfer do not collide with the asteroid. This makes sense
because the projection of Eros shape is larger in the equatorial plane xy than in the polar plane yz.

The outcome of the designed transfers is shown in Fig. 12 for the constant density polyhedron.
For the sake of brevity, only the mascon with nM = 100 and its fused PINN with 6 × 40 SIREN
are compared in terms of terminal accuracy. The error in reaching the desired target is depicted
in Fig. 13 with a bidimensional projection in xz and xy planes respectively. One can think of the
coordinates contained in these planes as terminal lateral errors. Due to this, they are denoted as
δx′ and δy′ with δz′ the longitudinal error which corresponds to the planetocentric −y (transfer
to Psyche crater) or z (transfer to North pole) directions depending on the scenario. For both the
Psyche crater and north pole transfers, the mascon-PINN guarantees < 0.25 m in lateral accuracy
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From r0 [km] To rf [km] T [h]

Equatorial orbit 34 · [cos ν, sin ν, 0]T Psyche crater [0,−3.75, 0]T 4
Polar orbit 34 · [0, cos ν, sin ν]T North pole [0, 0, 5.75]T 4

Table 3. Boundary conditions for low altitude ballistic transfers. For each departure orbit 40 equis-
paced true anomalies ν are simulated.

Figure 12. Transfers propagated with ground truth constant density polyhedron and
designed with mascon-PINN model (nM=100 - 6×40 SIREN).

while the mascon dispersion can be as large as 2 m (Fig. 13). When evaluating the total terminal
error, ∥r(tf )− rf∥, the mascon model provides 1.2− 3 m in terminal accuracy while the mascon-
PINN is superior with errors contained in the 0.04 − 0.3 m range. Similar trends are found for the
heterogeneous polyhedron though they are not included in the manuscript due to length constraints.

CONCLUSIONS

This manuscript introduces the mascon-PINN gravity model, which effectively combines the
traditional mascon approach with a physics-informed neural network (PINN). The mascon-PINN
model can be thought of as a base mascon distribution with an attached PINN that is smoothly down-
weighted at altitudes beyond the data bounds. This fusion strategy mimics the PINN-GM-III model
(see Ref. 13), where a point-mass model is used to robustify the model solution at high altitudes.
The mascon-PINN training process is based on a position-gravity dataset and encompasses two
stages: first, the mascon distribution is regressed and kept invariant; afterward, a weighted PINN
is added to form the mascon-PINN gravity model, with only the network weights and biases being
trained.

The usefulness of the proposed mascon-PINN model is supported by ample evidence. The ground
truth models are diverse, encompassing both a constant density and a heterogeneous polyhedron.
When approximating the previous models the mascon-PINN has demonstrated their superiority
over the standalone mascon in all test scenarios. The testing has included the evaluation of global
gravity accuracy, orbital propagation, and ballistic transfer design. These results pertain low-to-
medium altitudes as both models are equivalent at high altitudes due to the PINN deactivation. The
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Figure 13. Transfers terminal lateral errors for mascon (nM=100) and mascon-PINN
(nM=100 - 6×40 SIREN) models.

simulations are conducted using the Basilisk open-source astrodynamics library, demonstrating the
mascon-PINN model’s ease of use. Future work may focus on finding and mitigating the root cause
of the computational time overhead when evaluating the PINN contribution. In addition, down-
weighting the mascon model at low altitudes is to be explored as that strategy could possibly allow
to remove large errors on the surface.
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