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∗∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

(e-mail: louembet@laas.fr).

Abstract: This work presents an event-triggered model predictive controller for spacecraft
hovering phases. The target is flying in an elliptic orbit and is assumed to be inert whereas the
chaser has impulsive thrusters. The main goal is to design a local controller based on event-
triggering to keep the spacecraft within a hovering region while minimizing fuel consumption
and avoiding unnecessary small amplitude firings. Using hybrid impulsive systems theory and
reachability analysis, the invariance of the proposed method is studied. Simulation results are
shown and discussed.
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1. INTRODUCTION

In the context of spacecraft rendezvous, the hovering phase
consists of a spacecraft maintaining its relative position
within a bounded region with respect to a target space-
craft. This mission phase is especially relevant for orbit
servicing operations with potential application to geosta-
tionary satellites servicing, see Barnhart et al. (2013), and
spacecraft refuelling, see B. Reed et al. (2016).

In this paper, the target spacecraft is assumed to be inert
and the chaser one is moved by means of chemical thrusters
so that the control can be modelled by an impulsive signal.
Some relevant works on impulsive control for rendezvous
operations include Breger and How (2008), Di Cairano
et al. (2012) and Yang and Cao (2015) whereas formation
flying is addressed by Qi et al. (2012) and Gaias and
D’Amico (2015).

The purpose of this study is to design an event-triggered
predictive control strategy to maintain the spacecraft
within the limits of a defined polytopic zone. Arantes Gilz
et al. (2017) achieved station-keeping by controlling the
spacecraft motion in the set of periodic trajectories in-
cluded in the zone of interest. However, since the impulse
sequence is computed at a fixed period, the obtained con-
trols can be unnecessary or too small to be executed by
the thrusters, especially if the system belongs or is close
to the admissible set.

To overcome these drawbacks, an event-triggered model
predictive controller is considered in this work for station-
keeping. Event-based control is a control methodology
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where the commands are computed in an asynchronous
way, reducing the communication needs between the sen-
sors, the controller and the actuators in the control loop
(see Aström (2008) for the basics). This methodology can
be combined with feedback policies, see Wu et al. (2014)
and references therein, and model-predictive schemes, see
Pawlowski et al. (2015). In the context of spacecraft oper-
ations, event based controllers are recently attracting the
attention of the attitude control community, see Wu et al.
(2018) and Zhang et al. (2018), whereas some initial work
for rendezvous hovering phases can be found in Louembet
and Arantes Gilz (2018).

The main contribution of this paper is the development of
a predictive controller using impulsive control in an asyn-
chronous way. Its control objective is to locally stabilize
the set of relative trajectories included in a given polytopic
subset space. The scientific challenges arise from the linear
time-varying dynamics and from the limited capability of
the spacecraft thrusters which can only produce thrust of
a minimum and maximum magnitude.

The present work extends and completes the initial com-
munication by Louembet and Arantes Gilz (2018) in sev-
eral directions. The definitions of the control laws are
refined and explicitly detailed. The trigger laws have been
redefined to ensure that all possible cases are covered.
Additionally, the invariance of the proposed control ap-
proach is studied by using hybrid impulsive systems theory
(Haddad et al. (2006)).

Note that the hybrid systems framework has been em-
ployed in the orbital rendezvous context recently. For in-
stance, in the recent invited session “A Spacecraft Bench-
mark Problem for Analysis & Control of Hybrid Systems”



that was presented at the 2016 IEEE Conference on De-
cision and Control. Moreover, in Brentari et al. (2018),
a stability analysis of a given relative orbit has been
done. The present paper focuses on the invariance of the
set of periodic relative orbits that hover inside a given
polytopic subspace. The proposed controller ensures local
contractiveness.

The structure of this paper is as follows. Section 2 de-
scribes the relative motion model and the set of admissi-
ble orbits. Next, Section 3 presents both the control law
and trigger law. Section 4 studies the invariance of the
proposed controller. Section 5 shows results for cases of
interest. Finally, Section 6 closes this paper with some
additional considerations.

2. PROBLEM STATEMENT

In this section, first the relative motion model used to
design the control law is explained. Then, the set of
the constrained relative orbits for the hovering phase is
presented, and a formal description based on envelope
functions is provided.

2.1 Modelling the relative motion

The relative motion of the chaser spacecraft, denoted by
Sf , is expressed with respect to the local frame attached to
a passive target spacecraft whose position is denoted by Sl.
The local frame {Sl,x,y, z}, denoted Local Vertical/Local
Horizontal (LVLH), moves around the inertial Earth-
centered frame, {O, I,J ,K}, along the target spacecraft
orbit. Note that z is the radial position (positive towards
the centre of the Earth), y is the cross-track position
(opposite to the orbit angular momentum) and x is the
in-track position completing a right-handed system.

Under Keplerian assumptions, the relative motion between
two spacecraft in the Earth gravitational field can be
expressed by means of the Tschauner-Hempel equations,

see Tschauner (1967). Considering that ‖
−−→
OSl‖ � ‖

−−→
SlSf‖,

these equations can be linearized to obtain the following
linear time-varying dynamics

Ẋ(t) = A(t)X(t), (1)

where the state vector X represents the relative position
and velocity in the LVLH frame

X(t) = [x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T .

In this work, the transition matrix of the dynamics (1) is
exploited. To obtain this transition, a similarity transfor-
mation is applied

X̃(ν) = T (ν)X(t), with T (ν) =

[
ρI3 03

ρ′ I3
(
k2ρ
)−1 I3

]
, (2)

where (·)′ = d(·)
dν , k2 =

√
µ

a3(1−e2)3 and ρ = 1+e cos ν. The

transformation (2) is a change of the independent variable
from time t to true anomaly of the target spacecraft, ν,
which is the position of the target through its orbit. In
this framework, the transition matrix can be computed
(see Yamanaka and Ankersen (2002)) so that

X̃(ν) = Φ(ν, ν0)X̃(ν0), ν0 ≤ ν. (3)

In particular, the relative position can be explicitly ex-
pressed in a convenient manner as

x̃(ν) = d1(1 + ρ)sν − d2(1 + ρ)cν + d3 + 3d0J(ν)ρ2,

ỹ(ν) = d4cν + d5sν ,

z̃(ν) = d1ρcν + d2ρsν − 3ed0J(ν)sνρ+ 2d0,

(4)

where e is the eccentricity of the target orbit and J(ν) is
given by

J(ν) :=

∫ ν

ν0

dτ

ρ(τ)2
=

√
µ

a3

t− t0
(1− e2)3/2

. (5)

As the orbital elements of a Keplerian orbit, the pa-
rameters d0 to d5 are integration constants that define
the shape and position of the relative orbits, see (Dea-
conu, 2013, chap. 2). This fact makes the vector D =
[d0, d1, d2, d3, d4, d5]T the relevant state when aiming
to constrain relative orbits. Note that, a linear transfor-
mation exists between the relative state X̃ and the vector
D

X̃(ν) = F (ν)D(ν), (6)

with

F (ν) =



0 sν(1 + ρ) −cν(1 + ρ) 1 0 0
0 0 0 0 cν sν
2 cνρ sνρ 0 0 0
3 2cνρ− e 2sνρ 0 0 0
0 0 0 0 −sν cν

−3esν
ρ
−sν(1 + ρ) 2ec2ν − e+ cν 0 0 0


.

Since detF = 1 − e2 6= 0, ∀e ∈ [0, 1), it represents a
similarity transformation and D is a proper state vector
with its own dynamics,

D′(ν) =



0 0 0 0 0 0
0 0 0 0 0 0

− 3e
ρ2 0 0 0 0 0

3
ρ2 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

AD(ν)

D(ν), (7)

and its own transition matrix,

D(ν) =


1 0 0 0 0 0
0 1 0 0 0 0

−3eJ(ν) 0 1 0 0 0
3J(ν) 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

ΦD(ν,ν0)

D(ν0). (8)

Typically, for space hovering operations, the chaser space-
craft is controlled by chemical engines that provide a
high level of thrust during a short time with respect to
the target orbit period. This fact leads to extremely fast
changes of velocities that can be modelled as impulses

X+(t) = X(t) +B∆V (t), with B = [03, I3]T , (9)

where 03 is the square null matrix and I3 is the identity
matrix, both of dimension 3. Applying the changes of
variable (2) and (6), an impulse at instant ν produces a
jump in the D state as

D+(ν) = D(ν) +BD(ν)∆V (ν), (10)

with
BD(ν) = F−1(ν)T (ν)B, (11)



and hence
BD(ν) =

1

k2(e2 − 1)ρ


ρ2 0 −esνρ

−2cν − e(1 + c2ν) 0 sνρ
−sν(2 + ecν) 0 2e− cνρ
esν(2 + ecν) 0 ecνρ− 2

0 −(e2 − 1)sν 0
0 (e2 − 1)cν 0

 .
Equation (10) shows that a given impulsive control, ∆V ,
will have a different influence depending on the instant of
application due to the time dependence of the input matrix
BD. Additionally, the thrust magnitude along each axis
has to comply with the following conditions on deadzone
and saturation

∆V ≤ |∆V | ≤ ∆V . (12)

The previous facts have to be accounted for in order to
design the event-triggered controller.

2.2 Semi-algebraic description of the constrained orbits set

The goal of our predictive controller is to maintain the
spacecraft hovering in a predefined polytopic subset of the
relative position space. Thereafter, a cuboid is considered
without loss of generality:

x ≤ x(t) ≤ x, y ≤ y(t) ≤ y, z ≤ z(t) ≤ z , ∀t ≥ t0. (13)

The most economic way to hover in a given zone, is that
the chaser evolves on periodic orbits. In the relative motion
framework, a relative orbit is periodic if and only if its
parameter D satisfy the periodicity condition d0 = 0.
This condition can be derived from (4) by noting that the
only non periodic term J(ν) is weighted by the state d0.
Inserting the changes of variables (2) and (6) into (13)
and considering the periodicity condition, the admissible
set SpD can be formally defined as

SpD :=

D ∈ R6

∣∣∣∣∣∣ d0 = 0,
x ≤ Fx(ν)D ≤ x
y ≤ Fy(ν)D ≤ y
z ≤ Fz(ν)D ≤ z

,∀ν

 , (14)

where Fx, Fy and Fz are, respectively the first three rows
of F divided by ρ. The set SpD is described by linear but
time-varying conditions on the state D.
In Arantes Gilz et al. (2017), an implicitization method
is developed to obtain a semi-algebraic description of the
admissible set:

SpD = {D ∈ R6 | d0 = 0 | gw(D) ≤ 0,

∀w ∈ {x, x, y, y, z, z}}. (15)

where the functions gw(D) are given by

gx(d1, d2, d3) = rx(d1, d2, e, x)− d3, (16)

gx(d1, d2, d3) = d3 − rx(d1, d2, e, x), (17)

gy(d4, d5) = (d4 − ey)2 + d2
5 − y2, (18)

gy(d4, d5) = (d4 − ey)2 + d2
5 − y2, (19)

gz(d1, d2) = d2
1 + d2

2 − z2, (20)

gz(d1, d2) = d2
1 + d2

2 − z2, (21)

where rx and rx denote the largest and smallest real roots
of the following polynomials in d3

ĝx(d1, d2, d3) =

4∑
i=0

θx,i(d1, d2)di3, (22)

ĝx(d1, d2, d3) =

4∑
i=0

θx,i(d1, d2)di3. (23)

The interested reader is referred to Arantes Gilz et al.
(2017) for explicit details.

3. EVENT-BASED ALGORITHM

In this section, the control and trigger laws that constitute
the event-triggered controller are designed. One must
notice that the trigger law determines when to apply a
suitable control law.

3.1 Control law

By inspecting the transition matrix (8) and the spatial
constraints (14) it can be seen that the in-plane and out-
of-plane control problems are decoupled and thus can be
treated separately.

In-plane control Let us define the in-plane motion by
the state subset Dxz=[d0, d1, d2, d3]T . As stated earlier,
periodicity is a desirable property to hover over a specified
region, therefore, the in-plane control strategy aims to
steer the system to a periodic orbit with one impulsive
control. Hence, the in-plane state after an in-plane im-
pulse ∆Vxz=[∆Vx,∆Vz]

T is given by D+
xz(ν) = Dxz(ν) +

BD,xz(ν)∆Vxz(ν) where BD,xz∈R4×2 is composed by the
in-plane terms of BD. In particular, the state d0 is con-
trolled such that

d+
0 (ν) = d0(ν) +Bd0,xz(ν)∆Vxz(ν) = 0, (24)

where Bdi,xz with i=0. . .3 is the (i+1)th row of BD,xz. A
control satisfying (24) is written as

∆Vxz(ν) = λxzB
⊥
d0,xz(ν) + ∆V 0

xz(ν), (25)

where λxz∈R, B⊥d0,xz∈R
2 describes the kernel space of

Bd0,xz and ∆V 0
xz∈R2 is a particular solution of (24). With

this periodicity pursuing strategy, the effect of a control
impulse on the current state D is described by

D+
xz(ν, λxz) =Dxz(ν)+

BD,xz(ν)(λxzB
⊥
d0,xz(ν) + ∆V 0

xz(ν)),
(26)

To maintain the state Dxz in the admissible set SpDxz at
time ν, the following program is solved

min
λxz
‖∆Vxz(ν, λxz)‖1,

s.t.

{
D+
xz(ν) ∈ SpDxz ,

λxz ∈ Isat,xz(ν),

(Psat,in)

where Isat,xz describes the input saturation and deadzone
condition as a function of λxz and ν such that

Isat,xz = {λxz ∈ R s.t.

∆V ≤ |λxzB⊥d0,xz (ν) + ∆V 0
xz(ν)| ≤ ∆V } =

[l−, l−] ∪ [l+, l+],

(27)

where l−=(Bd⊥0,xz )
+(−∆V −∆V 0

xz), l
−=(Bd⊥0,xz )

+(−∆V −
∆V 0

xz), l
+=(Bd⊥0,xz )

+(∆V−∆V 0
xz) and l+=(Bd⊥0,xz )

+(∆V−
∆V 0

xz).



Out-of-plane control The out-of-plane motion, repre-
sented by Dy = [d4, d5]T , is naturally periodic and any
out-of-plane control ∆Vy=λy produces a periodic orbit.
Consequently, the effect of an out-of-plane impulse on the
current state D is given by

D+
y (ν, λy) = Dy(ν) + λyBD,y(ν), (28)

and to steer the state Dy to the admissible set SpDy at time

ν, the following program is solved

min
λy
‖∆Vy(ν, λy)‖1,

s.t.

{
D+
y (ν) ∈ SpDy ,

λy ∈ Isat,y,
(Psat,out)

where Isat,y describes the input saturation and deadzone
conditions such that

Isat,y = [−∆V , ∆V ] ∪ [−∆V , ∆V ]. (29)

Note that Isat,y does not depend on ν.

3.2 Instantaneous reachability conditions

To set the trigger rules, instantaneous SpD reachability
conditions needs to be set at a given time instant ν. Note
that, for the sake of the clarity of the notation, the time
dependence is omitted in this section. First, let the set ∆+

be the reachable set of D+ from D with one control. ∆+

is a two-dimensional plane on the D space, defined by the
lines ∆+

xz and ∆+
y

∆+
xz = {D+

xz ∈ R4 s.t. (26), λxz ∈ R}, (30)

∆+
y = {D+

y ∈ R2 s.t. (28), λy ∈ R}. (31)

A necessary condition for the admissible set SpD to be
reachable is that the following sets Λ+

xz and Λ+
y are non-

empty:

Λ+
xz = [lxz, lxz], (32)

Λ+
y = [ly, ly]. (33)

The intervals [lxz, lxz] and [ly, ly] are computed such that

at a given fixed instant ν

∀λxz ∈ [lxz, lxz] :{gx(λxz) ≤ 0, gx(λxz) ≤ 0,

gz(λxz) ≤ 0, gz(λxz) ≤ 0},
(34)

∀λy ∈ [ly, ly] : {gy(λy) ≤ 0, gy(λy) ≤ 0}. (35)

Note that the univariate polynomials gw(λxz, λy) are ob-
tained by introducing the expressions (26) and (28), in λxz
and λy respectively, in (22)-(23), (20)-(21) and (18)-(19).
Moreover, accounting for the saturation and deadzone
conditions (12), SpD is reachable if and only if the sets

Λ+
sat,xz and Λ+

sat,y are non-empty:

Λ+
sat,xz = [lxz, lxz] ∩ Isat,xz 6= ∅, (36)

Λ+
sat,y = [ly, ly] ∩ Isat,y 6= ∅. (37)

Note that the sets of reachable admissible states, ∆+
sat,xz

and ∆+
sat,y, are given by

∆+
xz = {D+

xz ∈ R4 s.t. (26), λxz ∈ Λ+
sat,xz}, (38)

∆+
y = {D+

y ∈ R2 s.t. (28), λy ∈ Λ+
sat,y}. (39)

Let us define the following variables that measure the
length of the intervals Λ+

sat,xz and Λ+
sat,y and its time

derivative

Lxz = len(Λ+
sat,xz), Ly = len(Λ+

sat,y), (40)

Lν,xz =
dLxz
dν

, Lν,y =
dLy
dν

. (41)

These variables will be used as an oracle for the SpD in-
stantaneous reachability in the triggering strategy section.

3.3 Reachability conditions over one period

In the previous section, instantaneous reachability condi-
tions on SpD are set for a given instant ν. This section
establishes that SpD is reachable over the next 2π-period
(a complete revolution) assuming that the current state
D is an equilibrium point (d0 = 0). Recalling that the
control matrix BD is 2π-periodic, computing the reach-
able set from a given state over a 2π-period can be done
through implicitization techniques. In order to simplify the
following notation, we introduce the state increment

∆D(ν) = D+(ν)−D(ν) = BD(ν)∆V (ν)

= [∆d0, ∆d1, ∆d2, ∆d3, ∆d4, ∆d5]T . (42)

Considering the out-of-plane motion, the state increment
is represented by ∆Dy = [∆d4(ν), ∆d5(ν)]. The incre-
mental reachable set over an orbital period depends on
the control effort λy and is implicitly described by

fy(∆D,λy) =

∆d2
4(

λy
k2
√

1−e2

)2 +

(
∆d5 +

eλy
k2(1−e2)

)2

(
λy

k2(1−e2)

)2 − 1 = 0. (43)

Note that (43) is an ellipse in the ∆d4-∆d5 plane. Its semi-
axes and center are both affected by the control parameter,
λy. Hence, for given deadzone and saturation conditions
λy ∈ Isat, the incremental reachable set is described by

Dfy = Dfy,− ∪ Dfy,+, (44)

where

Dfy,− := {∆D ∈ R6 :fy(∆D,−∆V ) ≥ 0,

fy(∆D,−∆V ) ≤ 0}.
(45)

Dfy,+ := {∆D ∈ R6 :fy(∆D,∆V ) ≥ 0,

fy(∆D,∆V ) ≤ 0}.
(46)

By computing the Minkowski sum of SpD, the admissible
set, with the incremental reachable set (44),

Dc,out := SpDy ⊕Dfy , (47)

one obtains a subset of the state from where SpD can
be reached by means of impulsive control (see Fig.1).
Regarding the in-plane motion, both in-track (x) and
radial (z) constraints have to be addressed. The in-plane
control action, (26), can be implicitized for d0≈0 using a
Gröbner basis as in Fix et al. (1996)

4∆d2
1 + (−e2 + 4)∆d2

2 + 2e∆d2∆d3 −∆d2
3 = 0. (48)

Note that (48) is the equation of a cone representing the
unconstrained in-plane incremental reachable set over a
target orbital period. However, the implicitization is only
valid if all the instants over a target orbital period are
allowed which is not the case due to (27). Therefore, the
in-plane attainable set is studied by numerical means.

The numerical method is designed by defining a volume Ω
in the d1d2d3 space embedding SpDxz . For discrete points,
Dj∈Ω, of the previously defined volume, intersections



Fig. 1. Dc,out and Dc,out for Table 1 parameters.

Fig. 2. ∂Dc,in for Table 1 parameters.

between the admissible set and the constrained reachable
set can be computed ∆+

sat,xz(Dj , νi) where νi∈[0,2π] are
discrete true anomalies. Then, the value Lxz,2π(Dj) =∑Nν
i=1 len(Λ+

sat,xz(Dj , νi)) is estimated. If Lxz,2π(Dj) 6=0,

then exists an instant νi for which SpD is reachable from
Dj so that Dj ∈ Dc,in. ∂Dc,in, the boundary of Dc,in
can be numerically interpolated and is shown in Fig. 2.
For the previous figure, 64000 points within a cube of
200×200×200 dimensions centered at [0,0,100]T in the
d1d2d3 space defines Ω. For each Dj , it has been assumed
d0,j=0.

In conclusion, SpD is reachable over a 2π-period if and only
if D ∈ Dc = Dc,in ×Dc,out.

3.4 Trigger law

The trigger law is designed to achieve a threefold objective.
Firstly the programs (Psat,in) and (Psat,out) have to
be feasible when executed. Secondly, unnecessary controls
must be avoided. Finally, Zeno phenomena should be
ensured to not occur.

Using the definitions from previous section, the triggering
decision is made according to Algorithm 1, which sends
a trigger each time the spacecraft leaves the admissible
set SpD based on (15). Note that Algorithm 2 chooses the
suitable control program when a trigger signal is raised
and is valid for both in-plane and out-of-plane control.

Algorithm 1 (Trigger rules)

Input: ν, D
Output: control decision

if D(ν) ∈ SpD then
Wait.

else
Call algorithm 2

end if

Algorithm 2 (Strategy to reach the admissible set SpD)

Input: ν, D
Output: control decision

if D(ν)/∈SpDxz then
if Lxz(ν)<δ & Lν,xz(ν)<0 then

Solve (Psat,in) and apply ∆Vxz.
else if Lxz(ν) = 0 then

if D ∈ Dc then
Wait until νp such that Lxz(νp) 6= 0,

else
Apply the controller of Arantes Gilz et al.

(2018)
end if

else
Wait

end if
end if
if D(ν)/∈SpDy then

if Ly(ν)<δ & Lν,y(ν)<0 then
Solve (Psat,out) and apply ∆Vy.

else if Ly(ν) = 0 then
if D ∈ Dc then

Wait until νp such that Ly(νp) 6= 0,
else

Apply the controller of Arantes Gilz et al.
(2018)

end if
else

Wait
end if

end if

To summarize, the strategy to reach SpD consists in first

computing Λ+
sat(ν). An impulse control is triggered if L(ν)

is below a given threshold, δ, and is contracting Lν(ν) < 0.
Note that the previous variables are computed for the
corresponding in-plane or out-of-plane motion. Otherwise,
the trigger law awaits for the length to diminish in order to
avoid unnecessary impulses accordingly to event-triggered
control philosophy. In the case where the admissible set is
not reachable at the current instant but is expected to be
in the next 2π period (D ∈ Dc), the controller awaits until
SpD becomes reachable again to apply a control action. If it
is not the case, the 3-impulsive approach of Arantes Gilz
et al. (2018), assuring global convergence to SpD, can be
employed.
Note that Zeno-type behaviours are avoided by the pres-
ence of deadzone conditions in (27) and (29).



4. INVARIANCE OF THE SINGLE-IMPULSE
APPROACH

In this section, the invariance of the proposed event-based
predictive controller is studied. Firstly, some fundamental
results of invariance for hybrid impulsive systems are sum-
marized. Then the out-of-plane and in-plane invariance are
analyzed.

4.1 Invariance for hybrid impulsive systems

The relative motion between target and chaser is equiva-
lent to an hybrid impulsive system composed of the contin-
uous dynamics of (7) and the resets of (10). Therefore, the
main results of Haddad et al. (2006) regarding invariance
principles for hybrid impulsive systems apply. Consider the
following dynamical system G
ẋ(t) = fc(x(t)), x(0) = x0, x0 ∈ D, x(t) /∈ Z,
∆x(t) = fd(x(t)), x(t) ∈ Z, (G)

where ∆x denotes the instantaneous change on the state
x due to an impulse fd. Now, consider the following
assumption over the hybrid system G.
Assumption 1 (Haddad et al. (2006)): assume fc(·) is
locally Lipschitz continuous onD, Z is closed, and fd(x)6=0
for x∈Z\∂Z. If x∈∂Z is such that fd(x)=0, then fc(x)=0.
If x∈Z is such that fd(x)6=0, then x+fd(x)/∈Z.
If Assumption 1 holds, then the following theorem applies.
Theorem 1 (Haddad et al. (2006)): consider the system
G, assume Dc⊂D is a compact positively invariant set with
respect to G, and assume that there exist a continuously
differentiable function V :Dc→R such that

V ′(x)fc(x) ≤0, x ∈ Dc, x /∈ Z, (49)

V (x+ fd(x)) ≤V (x), x ∈ Dc, x ∈ Z. (50)

Let R∆
={x ∈ Dc : x /∈ Z, V ′(x)fc(x) = 0}∪{x ∈ Dc : x ∈

Z, V (x + fd(x)) = V (x)} and let M denote the largest
invariant set contained in R. If x0∈Dc, then x(t)→M as
t→∞.
Considering Assumption 1 and Theorem 1, let us prove
this proposition.
Proposition 1: under the hypothesis of Assumption 1
and with the trigger law of Algorithm 1 active, consider
x∈M with M an invariant set such that M⊂Dc and
∂M∩∂Dc=∅. Then, if y0=x+δx/∈M, y(t)→M as t→∞.
Proof : since M⊂Dc and ∂M∩∂Dc=∅, as soon as x+δx
is outsideM, the trigger law activates and will command,
through Algorithm 2, a single impulse steering back the
state to the admissible set, y∈SpD, SpD⊂M.

Regarding the problem considered in this paper, Assump-
tion 1 holds since (7) is Lipschitz continuous for e∈[0, 1)
and the trigger condition given by Algorithm 1 is based
on a closed domain SpD. Moreover, Algorithm 2 guarantees
that SpD is reachable.

Additionally, Proposition 1 implies a sufficient condition
for the invariance of the set SpD, under application of the
event-triggered controller, in the presence of continuous
disturbances. Since SpD has been clearly defined in (15),
Proposition 1 has to be studied by obtaining Dc, which
will be referred to as the invariant contracting set.

4.2 Out-of-plane invariance

Regarding the invariance of the out-plane admissible set
SpDy , the following continuously differentiable function is

proposed

Vym = gym = (d4 − eym)2 + d2
5 − y2

m, (51)

which is the same expression of the out-of-plane constraint
described semi-algebraically in (18)-(19). Note that for
both y and y constraints, Theorem 1 is fulfilled as

∂Vym(D)

∂D
D′(ν) =0, D ∈ Dc,out, D ∈ SpDy , (52)

Vym(D+) ≤Vym(D), D ∈ Dc,out, D /∈ SpDy , (53)

where Dc,out denotes the invariant set of states contained
within the exterior boundary of Dc,out. On the other hand,

Dc,out := {D ∈ Dc,out, s.t. Vym(D+) = Vym(D), D /∈ SpDy}
denotes the deadzone set. Hence, according to Theorem 1,
the out-plane invariant set is the union of the out-plane
admissible set and the deadzone set Mout=S

p
Dy
∪Dc,out.

Finally, note that Proposition 1 holds since Mout⊂Dc,out

and ∂Mout∩∂Dc,out=∅ as it can be deduced from (47)
which is the Minkowski sum of a convex bounded set with
an ellipse having a hole on its interior. A computation of
the previous sets for a case with ∆V=∆V is shown in Fig.1

4.3 In-plane invariance

To demonstrate the invariance of the in-plane admissible
set the following functions are proposed

Vxm = ĝxm =

4∑
i=0

θxm,i(d1, d2)di3,

Vzm = gzm = d2
1 + d2

2 − z2
m,

(54)

which are the same expressions as the in-track and radial
constraints described semi-algebraically by (22)-(23) and
(20)-(21). It can be easily shown that Theorem 1 is fulfilled
by means of

∂Vwxz (D)

∂D
D′(ν) = 0, D ∈ Dc,in, D ∈ SpDxz , (55)

Vwxz (D
+) ≤ V (D), D ∈ Dc,in, D /∈ SpDxz , (56)

where wxz={x, x, z, z}. In view of (55)-(56), the in-plane
invariant set is given byMin:=SpDxz . Proposition 1 cannot
be applied 1 until Dc,in is obtained for the considered
scenario parameters. A set Dc,in computed numerically is
shown in Fig.2 where, for the chosen parameters, Propo-
sition 1 holds since Min⊂Dc,in and ∂Min∩∂Dc,in=∅.

5. SIMULATION RESULTS

To assess the performance of the proposed event-triggered
predictive controller, a hovering phase scenario described
in Table 1 is run. The simulation is done in MAT-
LAB/Simulink using a non-linear relative motion simu-
lator from Arantes Gilz (2016). Note that non-Keplerian
forces are accounted for such as the J2 effect and atmo-
spheric drag for both target and chaser vehicle.

Since the initial state is far from the admissible set, the
3-impulsive controller from Arantes Gilz et al. (2018) is
used to reach SpD. Then, the local event-based controller



a = 8750 km, e=0.2, ν0=0,
∆V=1·10−3 m/s, ∆V=0.1 m/s

Initial relative position: [400, 300, -40] m
Initial relative velocity: [0, 0, 0] m/s

[x, x, y, y, z, z]=[50, 150, -25, 25, -25, 25] m

Table 1. Scenario parameters

takes the lead as soon as SpD is reachable. The controller
threshold is δ=0.07 and the sampling sampling rate is such
that the trigger rules of algorithm 1 are evaluated every 5◦

(in terms of true anomaly) along 10 target orbital periods.
As seen in Fig.3, the event-triggered predictive controller

Fig. 3. Spacecraft trajectory.
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Fig. 4. Triggered impulses.

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

Fig. 5. Plot of Lxz, Ly and trigger signal.

achieves its purpose of maintaining the spacecraft at least
close to the hovering zone. The commanded impulses
are shown in Fig.4 where the limitation imposed by the
deadzone condition can be observed on for the out-of-
plane control. The oracle variables, Lxz and Ly and the
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1

Fig. 6. Admissible set signal.

J [cm/s] N [-] X ∈ box[%]
Local 4.375 7 98.26
Global 6.336 15 94.44

Table 2. Comparison between local and global
controllers.

trigger signal are shown in Fig.5 where it can be seen that
8 trigger signals are raised. Note that SpD is recovered after
the trigger signal between orbits 5 and 6 is raised, see Fig.6,
and hence only 7 impulses are necessary as seen in Fig.4.

Table 2 compares the local controller of this work with
the global controller from Arantes Gilz et al. (2018). The
comparison begins when the hovering zone is reached and
is carried out over 10 orbits. The considered parame-
ters for the global controller are τI=τE=5◦ and τS=60◦.
For the considered scenario, the event-triggered controller
improves the performance criteria in terms of fuel con-

sumption, J=
∑N
i=1‖∆Vi‖1, number of impulses N and the

percentage X ∈ box. The fuel consumption only accounts
for applied impulses control. For instance, when the global
controller computes impulses that fall within the dead-
zone, they are set to zero and are not considered in the
cost J . The criterion “X ∈ box” indicates the percentage
of time that the chaser spacecraft lays inside the hovering
box. Note that this criterion is different from the one
shown in Fig. 6 because the condition D ∈ SpD is sufficient
for the chaser to lay inside the hovering zone.

6. CONCLUSIONS

In this paper, an event-triggered predictive controller is
presented to locally maintain the spacecraft within the
limits of the hovering zone, respecting both deadzone and
saturation conditions. The control law is based on a single
impulse driving the spacecraft back to the admissible set
every time a trigger is raised. A study of invariance for
the proposed approach has been made by using impulsive
hybrid systems theory combined with reachability tech-
niques. The main drawback of the proposed algorithm
is that invariance for the in-plane motion has not been
formally proven but only shown by numerical means for
the scenario parameters. Future work may include a more
formal analysis of the in-plane invariance and the possible
consideration of multi-impulsive control laws to enlarge
the reachable set.
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